Loading…

Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being

Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contai...

Full description

Saved in:
Bibliographic Details
Main Authors: Irvine, John M., Angelini, Brigid, Crystal, Michael
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10
container_issue
container_start_page 1
container_title
container_volume
creator Irvine, John M.
Angelini, Brigid
Crystal, Michael
description Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contain infrastructural and agricultural information that, in a previous study focused on Afghanistan and Botswana, provided a useful for characterizing regional socio-economic information. Previous studies have compared survey responses to imagery feature, using supervised machine learning models. Building on previous work, this study explores long-term assessments of a country. As with previous studies, image features extracted from commercial imagery form the explanatory variables for our models. In this case, however, we seek to predict annual indicators of conditions for a country as assessed by the World Bank. The models relate imagery-derived features to indicators of Political Stability, Control of Corruption, Rule of Law, Government Effectiveness, Voice and Accountability, and Gross Domestic Product using data from multiple countries.
doi_str_mv 10.1109/AIPR52630.2021.9762189
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9762189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762189</ieee_id><sourcerecordid>9762189</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1049df8f8385afdaad5100c2644c96d859d3ad98967a8963cd3dd3a8b5d325bf3</originalsourceid><addsrcrecordid>eNotkN9KwzAcRqMgOOeeQJA8wFLzp0mTyzF0FgqOzeHlSJtfRqRLpQnC3t6Cu_kOnItz8SH0zGjBGDUvq3q7k1wJWnDKWWEqxZk2N2hhKs2UkiUvK1beohkXghOpmLxHDyl9Uyo042yGDjs4DxnwHmIK8YS3I7jQ5YSbIZ5IhvGM6zgZm4cx4cHjzfALY7SxgyXeZ9uGPuTLEtvo8Bf0PWlhyjyiO2_7BIsr5-jw9vq5fifNx6ZerxoSOBWZMFoa57XXQkvrnbVOMko7rsqyM8ppaZywzmijKjuN6Jxwk9GtdILL1os5evrvBgA4_ozhbMfL8fqC-AMZVFHj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being</title><source>IEEE Xplore All Conference Series</source><creator>Irvine, John M. ; Angelini, Brigid ; Crystal, Michael</creator><creatorcontrib>Irvine, John M. ; Angelini, Brigid ; Crystal, Michael</creatorcontrib><description>Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contain infrastructural and agricultural information that, in a previous study focused on Afghanistan and Botswana, provided a useful for characterizing regional socio-economic information. Previous studies have compared survey responses to imagery feature, using supervised machine learning models. Building on previous work, this study explores long-term assessments of a country. As with previous studies, image features extracted from commercial imagery form the explanatory variables for our models. In this case, however, we seek to predict annual indicators of conditions for a country as assessed by the World Bank. The models relate imagery-derived features to indicators of Political Stability, Control of Corruption, Rule of Law, Government Effectiveness, Voice and Accountability, and Gross Domestic Product using data from multiple countries.</description><identifier>EISSN: 2332-5615</identifier><identifier>EISBN: 9781665424714</identifier><identifier>EISBN: 1665424710</identifier><identifier>DOI: 10.1109/AIPR52630.2021.9762189</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; economic analysis ; Economic indicators ; Feature extraction ; governance ; Government ; imagery ; Machine learning ; remote sensing ; Satellites ; social indicators ; Soft sensors</subject><ispartof>2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2021, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irvine, John M.</creatorcontrib><creatorcontrib>Angelini, Brigid</creatorcontrib><creatorcontrib>Crystal, Michael</creatorcontrib><title>Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being</title><title>2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</title><addtitle>AIPR</addtitle><description>Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contain infrastructural and agricultural information that, in a previous study focused on Afghanistan and Botswana, provided a useful for characterizing regional socio-economic information. Previous studies have compared survey responses to imagery feature, using supervised machine learning models. Building on previous work, this study explores long-term assessments of a country. As with previous studies, image features extracted from commercial imagery form the explanatory variables for our models. In this case, however, we seek to predict annual indicators of conditions for a country as assessed by the World Bank. The models relate imagery-derived features to indicators of Political Stability, Control of Corruption, Rule of Law, Government Effectiveness, Voice and Accountability, and Gross Domestic Product using data from multiple countries.</description><subject>Biological system modeling</subject><subject>economic analysis</subject><subject>Economic indicators</subject><subject>Feature extraction</subject><subject>governance</subject><subject>Government</subject><subject>imagery</subject><subject>Machine learning</subject><subject>remote sensing</subject><subject>Satellites</subject><subject>social indicators</subject><subject>Soft sensors</subject><issn>2332-5615</issn><isbn>9781665424714</isbn><isbn>1665424710</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN9KwzAcRqMgOOeeQJA8wFLzp0mTyzF0FgqOzeHlSJtfRqRLpQnC3t6Cu_kOnItz8SH0zGjBGDUvq3q7k1wJWnDKWWEqxZk2N2hhKs2UkiUvK1beohkXghOpmLxHDyl9Uyo042yGDjs4DxnwHmIK8YS3I7jQ5YSbIZ5IhvGM6zgZm4cx4cHjzfALY7SxgyXeZ9uGPuTLEtvo8Bf0PWlhyjyiO2_7BIsr5-jw9vq5fifNx6ZerxoSOBWZMFoa57XXQkvrnbVOMko7rsqyM8ppaZywzmijKjuN6Jxwk9GtdILL1os5evrvBgA4_ozhbMfL8fqC-AMZVFHj</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Irvine, John M.</creator><creator>Angelini, Brigid</creator><creator>Crystal, Michael</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211012</creationdate><title>Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being</title><author>Irvine, John M. ; Angelini, Brigid ; Crystal, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1049df8f8385afdaad5100c2644c96d859d3ad98967a8963cd3dd3a8b5d325bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological system modeling</topic><topic>economic analysis</topic><topic>Economic indicators</topic><topic>Feature extraction</topic><topic>governance</topic><topic>Government</topic><topic>imagery</topic><topic>Machine learning</topic><topic>remote sensing</topic><topic>Satellites</topic><topic>social indicators</topic><topic>Soft sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Irvine, John M.</creatorcontrib><creatorcontrib>Angelini, Brigid</creatorcontrib><creatorcontrib>Crystal, Michael</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irvine, John M.</au><au>Angelini, Brigid</au><au>Crystal, Michael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being</atitle><btitle>2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</btitle><stitle>AIPR</stitle><date>2021-10-12</date><risdate>2021</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><eissn>2332-5615</eissn><eisbn>9781665424714</eisbn><eisbn>1665424710</eisbn><abstract>Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contain infrastructural and agricultural information that, in a previous study focused on Afghanistan and Botswana, provided a useful for characterizing regional socio-economic information. Previous studies have compared survey responses to imagery feature, using supervised machine learning models. Building on previous work, this study explores long-term assessments of a country. As with previous studies, image features extracted from commercial imagery form the explanatory variables for our models. In this case, however, we seek to predict annual indicators of conditions for a country as assessed by the World Bank. The models relate imagery-derived features to indicators of Political Stability, Control of Corruption, Rule of Law, Government Effectiveness, Voice and Accountability, and Gross Domestic Product using data from multiple countries.</abstract><pub>IEEE</pub><doi>10.1109/AIPR52630.2021.9762189</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2332-5615
ispartof 2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2021, p.1-10
issn 2332-5615
language eng
recordid cdi_ieee_primary_9762189
source IEEE Xplore All Conference Series
subjects Biological system modeling
economic analysis
Economic indicators
Feature extraction
governance
Government
imagery
Machine learning
remote sensing
Satellites
social indicators
Soft sensors
title Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Remote%20Sensing%20Predicts%20Long-term%20Indicators%20of%20Governance,%20Stability,%20and%20Well-being&rft.btitle=2021%20IEEE%20Applied%20Imagery%20Pattern%20Recognition%20Workshop%20(AIPR)&rft.au=Irvine,%20John%20M.&rft.date=2021-10-12&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.eissn=2332-5615&rft_id=info:doi/10.1109/AIPR52630.2021.9762189&rft.eisbn=9781665424714&rft.eisbn_list=1665424710&rft_dat=%3Cieee_CHZPO%3E9762189%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1049df8f8385afdaad5100c2644c96d859d3ad98967a8963cd3dd3a8b5d325bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9762189&rfr_iscdi=true