Loading…
Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being
Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contai...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Irvine, John M. Angelini, Brigid Crystal, Michael |
description | Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contain infrastructural and agricultural information that, in a previous study focused on Afghanistan and Botswana, provided a useful for characterizing regional socio-economic information. Previous studies have compared survey responses to imagery feature, using supervised machine learning models. Building on previous work, this study explores long-term assessments of a country. As with previous studies, image features extracted from commercial imagery form the explanatory variables for our models. In this case, however, we seek to predict annual indicators of conditions for a country as assessed by the World Bank. The models relate imagery-derived features to indicators of Political Stability, Control of Corruption, Rule of Law, Government Effectiveness, Voice and Accountability, and Gross Domestic Product using data from multiple countries. |
doi_str_mv | 10.1109/AIPR52630.2021.9762189 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9762189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762189</ieee_id><sourcerecordid>9762189</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1049df8f8385afdaad5100c2644c96d859d3ad98967a8963cd3dd3a8b5d325bf3</originalsourceid><addsrcrecordid>eNotkN9KwzAcRqMgOOeeQJA8wFLzp0mTyzF0FgqOzeHlSJtfRqRLpQnC3t6Cu_kOnItz8SH0zGjBGDUvq3q7k1wJWnDKWWEqxZk2N2hhKs2UkiUvK1beohkXghOpmLxHDyl9Uyo042yGDjs4DxnwHmIK8YS3I7jQ5YSbIZ5IhvGM6zgZm4cx4cHjzfALY7SxgyXeZ9uGPuTLEtvo8Bf0PWlhyjyiO2_7BIsr5-jw9vq5fifNx6ZerxoSOBWZMFoa57XXQkvrnbVOMko7rsqyM8ppaZywzmijKjuN6Jxwk9GtdILL1os5evrvBgA4_ozhbMfL8fqC-AMZVFHj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being</title><source>IEEE Xplore All Conference Series</source><creator>Irvine, John M. ; Angelini, Brigid ; Crystal, Michael</creator><creatorcontrib>Irvine, John M. ; Angelini, Brigid ; Crystal, Michael</creatorcontrib><description>Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contain infrastructural and agricultural information that, in a previous study focused on Afghanistan and Botswana, provided a useful for characterizing regional socio-economic information. Previous studies have compared survey responses to imagery feature, using supervised machine learning models. Building on previous work, this study explores long-term assessments of a country. As with previous studies, image features extracted from commercial imagery form the explanatory variables for our models. In this case, however, we seek to predict annual indicators of conditions for a country as assessed by the World Bank. The models relate imagery-derived features to indicators of Political Stability, Control of Corruption, Rule of Law, Government Effectiveness, Voice and Accountability, and Gross Domestic Product using data from multiple countries.</description><identifier>EISSN: 2332-5615</identifier><identifier>EISBN: 9781665424714</identifier><identifier>EISBN: 1665424710</identifier><identifier>DOI: 10.1109/AIPR52630.2021.9762189</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; economic analysis ; Economic indicators ; Feature extraction ; governance ; Government ; imagery ; Machine learning ; remote sensing ; Satellites ; social indicators ; Soft sensors</subject><ispartof>2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2021, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irvine, John M.</creatorcontrib><creatorcontrib>Angelini, Brigid</creatorcontrib><creatorcontrib>Crystal, Michael</creatorcontrib><title>Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being</title><title>2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</title><addtitle>AIPR</addtitle><description>Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contain infrastructural and agricultural information that, in a previous study focused on Afghanistan and Botswana, provided a useful for characterizing regional socio-economic information. Previous studies have compared survey responses to imagery feature, using supervised machine learning models. Building on previous work, this study explores long-term assessments of a country. As with previous studies, image features extracted from commercial imagery form the explanatory variables for our models. In this case, however, we seek to predict annual indicators of conditions for a country as assessed by the World Bank. The models relate imagery-derived features to indicators of Political Stability, Control of Corruption, Rule of Law, Government Effectiveness, Voice and Accountability, and Gross Domestic Product using data from multiple countries.</description><subject>Biological system modeling</subject><subject>economic analysis</subject><subject>Economic indicators</subject><subject>Feature extraction</subject><subject>governance</subject><subject>Government</subject><subject>imagery</subject><subject>Machine learning</subject><subject>remote sensing</subject><subject>Satellites</subject><subject>social indicators</subject><subject>Soft sensors</subject><issn>2332-5615</issn><isbn>9781665424714</isbn><isbn>1665424710</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN9KwzAcRqMgOOeeQJA8wFLzp0mTyzF0FgqOzeHlSJtfRqRLpQnC3t6Cu_kOnItz8SH0zGjBGDUvq3q7k1wJWnDKWWEqxZk2N2hhKs2UkiUvK1beohkXghOpmLxHDyl9Uyo042yGDjs4DxnwHmIK8YS3I7jQ5YSbIZ5IhvGM6zgZm4cx4cHjzfALY7SxgyXeZ9uGPuTLEtvo8Bf0PWlhyjyiO2_7BIsr5-jw9vq5fifNx6ZerxoSOBWZMFoa57XXQkvrnbVOMko7rsqyM8ppaZywzmijKjuN6Jxwk9GtdILL1os5evrvBgA4_ozhbMfL8fqC-AMZVFHj</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Irvine, John M.</creator><creator>Angelini, Brigid</creator><creator>Crystal, Michael</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211012</creationdate><title>Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being</title><author>Irvine, John M. ; Angelini, Brigid ; Crystal, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1049df8f8385afdaad5100c2644c96d859d3ad98967a8963cd3dd3a8b5d325bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological system modeling</topic><topic>economic analysis</topic><topic>Economic indicators</topic><topic>Feature extraction</topic><topic>governance</topic><topic>Government</topic><topic>imagery</topic><topic>Machine learning</topic><topic>remote sensing</topic><topic>Satellites</topic><topic>social indicators</topic><topic>Soft sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Irvine, John M.</creatorcontrib><creatorcontrib>Angelini, Brigid</creatorcontrib><creatorcontrib>Crystal, Michael</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irvine, John M.</au><au>Angelini, Brigid</au><au>Crystal, Michael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being</atitle><btitle>2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</btitle><stitle>AIPR</stitle><date>2021-10-12</date><risdate>2021</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><eissn>2332-5615</eissn><eisbn>9781665424714</eisbn><eisbn>1665424710</eisbn><abstract>Understanding a region's socio-economic conditions can inform the development of policies in both the public and private sectors. Commercial satellite imagery provides a potential avenue for abstracting socio-economic context in a quick and relatively inexpensive manner. Satellite images contain infrastructural and agricultural information that, in a previous study focused on Afghanistan and Botswana, provided a useful for characterizing regional socio-economic information. Previous studies have compared survey responses to imagery feature, using supervised machine learning models. Building on previous work, this study explores long-term assessments of a country. As with previous studies, image features extracted from commercial imagery form the explanatory variables for our models. In this case, however, we seek to predict annual indicators of conditions for a country as assessed by the World Bank. The models relate imagery-derived features to indicators of Political Stability, Control of Corruption, Rule of Law, Government Effectiveness, Voice and Accountability, and Gross Domestic Product using data from multiple countries.</abstract><pub>IEEE</pub><doi>10.1109/AIPR52630.2021.9762189</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2332-5615 |
ispartof | 2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2021, p.1-10 |
issn | 2332-5615 |
language | eng |
recordid | cdi_ieee_primary_9762189 |
source | IEEE Xplore All Conference Series |
subjects | Biological system modeling economic analysis Economic indicators Feature extraction governance Government imagery Machine learning remote sensing Satellites social indicators Soft sensors |
title | Remote Sensing Predicts Long-term Indicators of Governance, Stability, and Well-being |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Remote%20Sensing%20Predicts%20Long-term%20Indicators%20of%20Governance,%20Stability,%20and%20Well-being&rft.btitle=2021%20IEEE%20Applied%20Imagery%20Pattern%20Recognition%20Workshop%20(AIPR)&rft.au=Irvine,%20John%20M.&rft.date=2021-10-12&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.eissn=2332-5615&rft_id=info:doi/10.1109/AIPR52630.2021.9762189&rft.eisbn=9781665424714&rft.eisbn_list=1665424710&rft_dat=%3Cieee_CHZPO%3E9762189%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1049df8f8385afdaad5100c2644c96d859d3ad98967a8963cd3dd3a8b5d325bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9762189&rfr_iscdi=true |