Loading…

Developing a Testbed with P4 to Generate Datasets for the Analysis of 5G-MEC Security

Service providers have now entered the implementation phase for 5G mobile telecommunication networks. With this, the concept of Multi-access Edge Computing (MEC) will play a crucial role when providing services on-the-go with low latency, high availability and high bandwidth. However, due to the low...

Full description

Saved in:
Bibliographic Details
Main Authors: Fernando, Omesh A, Xiao, Hannan, Spring, Joseph
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2261
container_issue
container_start_page 2256
container_title
container_volume
creator Fernando, Omesh A
Xiao, Hannan
Spring, Joseph
description Service providers have now entered the implementation phase for 5G mobile telecommunication networks. With this, the concept of Multi-access Edge Computing (MEC) will play a crucial role when providing services on-the-go with low latency, high availability and high bandwidth. However, due to the low processing power of MEC nodes, adversaries may target the platform for malevolent purposes. In this paper we focus on building a realistic 5G-MEC testbed to run legitimate traffic and network attacks, and to collect 5G datasets for 5G-MEC. We also apply a Convolutional Neural Network to the dataset created on our testbed and to publicly available datasets. Our datasets and detection rate suggest that the employment of current public datasets for research based on 5G-MEC security, is now inappropriate.
doi_str_mv 10.1109/WCNC51071.2022.9771755
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9771755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9771755</ieee_id><sourcerecordid>9771755</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-2dc5f381cfa4248f4f9f2f240bd506478c98a3cb268188310c33c895c562b1973</originalsourceid><addsrcrecordid>eNotkMtKAzEUQKMg2Fa_QJD8wNTcm8dklmVaq1AfYIvLkklvbKR2yiRa5u8V7OosDpzFYewWxBhAVHfv9XOtQZQwRoE4rsoSSq3P2BCM0UqhMXjOBqC1LdAAXrJhSp9CoPiTA7aa0g_t2kPcf3DHl5RyQxt-jHnLXxXPLZ_TnjqXiU9ddoly4qHteN4Sn-zdrk8x8TZwPS-eZjV_I__dxdxfsYvgdomuTxyx1f1sWT8Ui5f5Yz1ZFBGkzAVuvA7Sgg9OobJBhSpgQCWajRZGldZX1knfoLFgrQThpfS20l4bbKAq5Yjd_HcjEa0PXfxyXb8-LZC_ZvhPEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Developing a Testbed with P4 to Generate Datasets for the Analysis of 5G-MEC Security</title><source>IEEE Xplore All Conference Series</source><creator>Fernando, Omesh A ; Xiao, Hannan ; Spring, Joseph</creator><creatorcontrib>Fernando, Omesh A ; Xiao, Hannan ; Spring, Joseph</creatorcontrib><description>Service providers have now entered the implementation phase for 5G mobile telecommunication networks. With this, the concept of Multi-access Edge Computing (MEC) will play a crucial role when providing services on-the-go with low latency, high availability and high bandwidth. However, due to the low processing power of MEC nodes, adversaries may target the platform for malevolent purposes. In this paper we focus on building a realistic 5G-MEC testbed to run legitimate traffic and network attacks, and to collect 5G datasets for 5G-MEC. We also apply a Convolutional Neural Network to the dataset created on our testbed and to publicly available datasets. Our datasets and detection rate suggest that the employment of current public datasets for research based on 5G-MEC security, is now inappropriate.</description><identifier>EISSN: 1558-2612</identifier><identifier>EISBN: 1665442662</identifier><identifier>EISBN: 9781665442664</identifier><identifier>DOI: 10.1109/WCNC51071.2022.9771755</identifier><language>eng</language><publisher>IEEE</publisher><subject>5G mobile communication ; 5G-MEC ; Bandwidth ; Buildings ; Communications technology ; Conferences ; Datasets ; Employment ; Multi-access edge computing ; Network Attacks ; Security ; Testbed ; UNSW NB-15</subject><ispartof>2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, p.2256-2261</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9771755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9771755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fernando, Omesh A</creatorcontrib><creatorcontrib>Xiao, Hannan</creatorcontrib><creatorcontrib>Spring, Joseph</creatorcontrib><title>Developing a Testbed with P4 to Generate Datasets for the Analysis of 5G-MEC Security</title><title>2022 IEEE Wireless Communications and Networking Conference (WCNC)</title><addtitle>WCNC</addtitle><description>Service providers have now entered the implementation phase for 5G mobile telecommunication networks. With this, the concept of Multi-access Edge Computing (MEC) will play a crucial role when providing services on-the-go with low latency, high availability and high bandwidth. However, due to the low processing power of MEC nodes, adversaries may target the platform for malevolent purposes. In this paper we focus on building a realistic 5G-MEC testbed to run legitimate traffic and network attacks, and to collect 5G datasets for 5G-MEC. We also apply a Convolutional Neural Network to the dataset created on our testbed and to publicly available datasets. Our datasets and detection rate suggest that the employment of current public datasets for research based on 5G-MEC security, is now inappropriate.</description><subject>5G mobile communication</subject><subject>5G-MEC</subject><subject>Bandwidth</subject><subject>Buildings</subject><subject>Communications technology</subject><subject>Conferences</subject><subject>Datasets</subject><subject>Employment</subject><subject>Multi-access edge computing</subject><subject>Network Attacks</subject><subject>Security</subject><subject>Testbed</subject><subject>UNSW NB-15</subject><issn>1558-2612</issn><isbn>1665442662</isbn><isbn>9781665442664</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEUQKMg2Fa_QJD8wNTcm8dklmVaq1AfYIvLkklvbKR2yiRa5u8V7OosDpzFYewWxBhAVHfv9XOtQZQwRoE4rsoSSq3P2BCM0UqhMXjOBqC1LdAAXrJhSp9CoPiTA7aa0g_t2kPcf3DHl5RyQxt-jHnLXxXPLZ_TnjqXiU9ddoly4qHteN4Sn-zdrk8x8TZwPS-eZjV_I__dxdxfsYvgdomuTxyx1f1sWT8Ui5f5Yz1ZFBGkzAVuvA7Sgg9OobJBhSpgQCWajRZGldZX1knfoLFgrQThpfS20l4bbKAq5Yjd_HcjEa0PXfxyXb8-LZC_ZvhPEA</recordid><startdate>20220410</startdate><enddate>20220410</enddate><creator>Fernando, Omesh A</creator><creator>Xiao, Hannan</creator><creator>Spring, Joseph</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220410</creationdate><title>Developing a Testbed with P4 to Generate Datasets for the Analysis of 5G-MEC Security</title><author>Fernando, Omesh A ; Xiao, Hannan ; Spring, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-2dc5f381cfa4248f4f9f2f240bd506478c98a3cb268188310c33c895c562b1973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>5G-MEC</topic><topic>Bandwidth</topic><topic>Buildings</topic><topic>Communications technology</topic><topic>Conferences</topic><topic>Datasets</topic><topic>Employment</topic><topic>Multi-access edge computing</topic><topic>Network Attacks</topic><topic>Security</topic><topic>Testbed</topic><topic>UNSW NB-15</topic><toplevel>online_resources</toplevel><creatorcontrib>Fernando, Omesh A</creatorcontrib><creatorcontrib>Xiao, Hannan</creatorcontrib><creatorcontrib>Spring, Joseph</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fernando, Omesh A</au><au>Xiao, Hannan</au><au>Spring, Joseph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Developing a Testbed with P4 to Generate Datasets for the Analysis of 5G-MEC Security</atitle><btitle>2022 IEEE Wireless Communications and Networking Conference (WCNC)</btitle><stitle>WCNC</stitle><date>2022-04-10</date><risdate>2022</risdate><spage>2256</spage><epage>2261</epage><pages>2256-2261</pages><eissn>1558-2612</eissn><eisbn>1665442662</eisbn><eisbn>9781665442664</eisbn><abstract>Service providers have now entered the implementation phase for 5G mobile telecommunication networks. With this, the concept of Multi-access Edge Computing (MEC) will play a crucial role when providing services on-the-go with low latency, high availability and high bandwidth. However, due to the low processing power of MEC nodes, adversaries may target the platform for malevolent purposes. In this paper we focus on building a realistic 5G-MEC testbed to run legitimate traffic and network attacks, and to collect 5G datasets for 5G-MEC. We also apply a Convolutional Neural Network to the dataset created on our testbed and to publicly available datasets. Our datasets and detection rate suggest that the employment of current public datasets for research based on 5G-MEC security, is now inappropriate.</abstract><pub>IEEE</pub><doi>10.1109/WCNC51071.2022.9771755</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1558-2612
ispartof 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, p.2256-2261
issn 1558-2612
language eng
recordid cdi_ieee_primary_9771755
source IEEE Xplore All Conference Series
subjects 5G mobile communication
5G-MEC
Bandwidth
Buildings
Communications technology
Conferences
Datasets
Employment
Multi-access edge computing
Network Attacks
Security
Testbed
UNSW NB-15
title Developing a Testbed with P4 to Generate Datasets for the Analysis of 5G-MEC Security
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Developing%20a%20Testbed%20with%20P4%20to%20Generate%20Datasets%20for%20the%20Analysis%20of%205G-MEC%20Security&rft.btitle=2022%20IEEE%20Wireless%20Communications%20and%20Networking%20Conference%20(WCNC)&rft.au=Fernando,%20Omesh%20A&rft.date=2022-04-10&rft.spage=2256&rft.epage=2261&rft.pages=2256-2261&rft.eissn=1558-2612&rft_id=info:doi/10.1109/WCNC51071.2022.9771755&rft.eisbn=1665442662&rft.eisbn_list=9781665442664&rft_dat=%3Cieee_CHZPO%3E9771755%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-2dc5f381cfa4248f4f9f2f240bd506478c98a3cb268188310c33c895c562b1973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9771755&rfr_iscdi=true