Loading…

Steady-State Heat Transfer in Class I MLCCs for Resonant Power Converter Applications

Resonant power converters utilize Class I multilayer ceramic capacitors (MLCCs) to create resonant LC circuits which enable power conversion at high levels of efficiency. MLCCs in such an application will dissipate power which causes component temperatures to rise. Loss in the dielectric and electro...

Full description

Saved in:
Bibliographic Details
Main Authors: Hayes, J. Hunter, Bultitude, John, Templeton, Allen, Laps, Mark, Schmidt, Axel
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 224
container_issue
container_start_page 217
container_title
container_volume
creator Hayes, J. Hunter
Bultitude, John
Templeton, Allen
Laps, Mark
Schmidt, Axel
description Resonant power converters utilize Class I multilayer ceramic capacitors (MLCCs) to create resonant LC circuits which enable power conversion at high levels of efficiency. MLCCs in such an application will dissipate power which causes component temperatures to rise. Loss in the dielectric and electrodes are the primary contributors to this heat generation, and the dominant loss mechanism depends on the frequency of operation. Heat generated by the MLCC is conducted by the metal electrodes to the terminations of the MLCC. From the terminations, heat is transferred into the PCB assembly and surrounding environment. An efficient thermal management solution is required to ensure the MLCC device temperature does not exceed the maximum allowable temperature rise for the part. This paper seeks to explain how MLCC construction methods and operating conditions effect the way heat is generated in the MLCC and transferred through the MLCC structure into the external environment. A thermal resistance model and an in-situ method for estimating the power dissipation and thermal resistance of MLCCs is also presented.
doi_str_mv 10.1109/APEC43599.2022.9773431
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9773431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9773431</ieee_id><sourcerecordid>9773431</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-41649e6de520320d77d22cacb6de1ab14829428b639fe34d1cd816f0030c3fbe3</originalsourceid><addsrcrecordid>eNotkN1KwzAcxaMguE2fQJC8QGu-mjSXJUw3qDjcdj3S5h-I1HQ0QdnbW3BX55wfh3NxEHqmpKSU6JdmtzaCV1qXjDBWaqW44PQGLamUlSCyrtUtWjChSCGlUPdomdIXIYwrKhfouM9g3aXYZ5sBb8BmfJhsTB4mHCI2g00Jb_F7a0zCfpzwJ6Qx2pjxbvydO2aMPzDl2TXn8xB6m8MY0wO683ZI8HjVFTq-rg9mU7Qfb1vTtEVghOdCUCk0SAfVHBlxSjnGett3M6K2o6JmWrC6k1x74MLR3tVUekI46bnvgK_Q0_9uAIDTeQrfdrqcrhfwP9gWUHs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Steady-State Heat Transfer in Class I MLCCs for Resonant Power Converter Applications</title><source>IEEE Xplore All Conference Series</source><creator>Hayes, J. Hunter ; Bultitude, John ; Templeton, Allen ; Laps, Mark ; Schmidt, Axel</creator><creatorcontrib>Hayes, J. Hunter ; Bultitude, John ; Templeton, Allen ; Laps, Mark ; Schmidt, Axel</creatorcontrib><description>Resonant power converters utilize Class I multilayer ceramic capacitors (MLCCs) to create resonant LC circuits which enable power conversion at high levels of efficiency. MLCCs in such an application will dissipate power which causes component temperatures to rise. Loss in the dielectric and electrodes are the primary contributors to this heat generation, and the dominant loss mechanism depends on the frequency of operation. Heat generated by the MLCC is conducted by the metal electrodes to the terminations of the MLCC. From the terminations, heat is transferred into the PCB assembly and surrounding environment. An efficient thermal management solution is required to ensure the MLCC device temperature does not exceed the maximum allowable temperature rise for the part. This paper seeks to explain how MLCC construction methods and operating conditions effect the way heat is generated in the MLCC and transferred through the MLCC structure into the external environment. A thermal resistance model and an in-situ method for estimating the power dissipation and thermal resistance of MLCCs is also presented.</description><identifier>EISSN: 2470-6647</identifier><identifier>EISBN: 1665406887</identifier><identifier>EISBN: 9781665406888</identifier><identifier>DOI: 10.1109/APEC43599.2022.9773431</identifier><language>eng</language><publisher>IEEE</publisher><subject>C0G ; Capacitance ; Capacitor ; Ceramic ; Class 1 ; Class I ; Dielectric losses ; Electrodes ; ESR ; Heat Transfer ; MLCC ; Modeling ; NP0 ; Resonant Converter ; RLC circuits ; Thermal Management ; Thermal management of electronics ; Thermal resistance ; U2J ; Voltage</subject><ispartof>2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 2022, p.217-224</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9773431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9773431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hayes, J. Hunter</creatorcontrib><creatorcontrib>Bultitude, John</creatorcontrib><creatorcontrib>Templeton, Allen</creatorcontrib><creatorcontrib>Laps, Mark</creatorcontrib><creatorcontrib>Schmidt, Axel</creatorcontrib><title>Steady-State Heat Transfer in Class I MLCCs for Resonant Power Converter Applications</title><title>2022 IEEE Applied Power Electronics Conference and Exposition (APEC)</title><addtitle>APEC</addtitle><description>Resonant power converters utilize Class I multilayer ceramic capacitors (MLCCs) to create resonant LC circuits which enable power conversion at high levels of efficiency. MLCCs in such an application will dissipate power which causes component temperatures to rise. Loss in the dielectric and electrodes are the primary contributors to this heat generation, and the dominant loss mechanism depends on the frequency of operation. Heat generated by the MLCC is conducted by the metal electrodes to the terminations of the MLCC. From the terminations, heat is transferred into the PCB assembly and surrounding environment. An efficient thermal management solution is required to ensure the MLCC device temperature does not exceed the maximum allowable temperature rise for the part. This paper seeks to explain how MLCC construction methods and operating conditions effect the way heat is generated in the MLCC and transferred through the MLCC structure into the external environment. A thermal resistance model and an in-situ method for estimating the power dissipation and thermal resistance of MLCCs is also presented.</description><subject>C0G</subject><subject>Capacitance</subject><subject>Capacitor</subject><subject>Ceramic</subject><subject>Class 1</subject><subject>Class I</subject><subject>Dielectric losses</subject><subject>Electrodes</subject><subject>ESR</subject><subject>Heat Transfer</subject><subject>MLCC</subject><subject>Modeling</subject><subject>NP0</subject><subject>Resonant Converter</subject><subject>RLC circuits</subject><subject>Thermal Management</subject><subject>Thermal management of electronics</subject><subject>Thermal resistance</subject><subject>U2J</subject><subject>Voltage</subject><issn>2470-6647</issn><isbn>1665406887</isbn><isbn>9781665406888</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1KwzAcxaMguE2fQJC8QGu-mjSXJUw3qDjcdj3S5h-I1HQ0QdnbW3BX55wfh3NxEHqmpKSU6JdmtzaCV1qXjDBWaqW44PQGLamUlSCyrtUtWjChSCGlUPdomdIXIYwrKhfouM9g3aXYZ5sBb8BmfJhsTB4mHCI2g00Jb_F7a0zCfpzwJ6Qx2pjxbvydO2aMPzDl2TXn8xB6m8MY0wO683ZI8HjVFTq-rg9mU7Qfb1vTtEVghOdCUCk0SAfVHBlxSjnGett3M6K2o6JmWrC6k1x74MLR3tVUekI46bnvgK_Q0_9uAIDTeQrfdrqcrhfwP9gWUHs</recordid><startdate>20220320</startdate><enddate>20220320</enddate><creator>Hayes, J. Hunter</creator><creator>Bultitude, John</creator><creator>Templeton, Allen</creator><creator>Laps, Mark</creator><creator>Schmidt, Axel</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220320</creationdate><title>Steady-State Heat Transfer in Class I MLCCs for Resonant Power Converter Applications</title><author>Hayes, J. Hunter ; Bultitude, John ; Templeton, Allen ; Laps, Mark ; Schmidt, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-41649e6de520320d77d22cacb6de1ab14829428b639fe34d1cd816f0030c3fbe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C0G</topic><topic>Capacitance</topic><topic>Capacitor</topic><topic>Ceramic</topic><topic>Class 1</topic><topic>Class I</topic><topic>Dielectric losses</topic><topic>Electrodes</topic><topic>ESR</topic><topic>Heat Transfer</topic><topic>MLCC</topic><topic>Modeling</topic><topic>NP0</topic><topic>Resonant Converter</topic><topic>RLC circuits</topic><topic>Thermal Management</topic><topic>Thermal management of electronics</topic><topic>Thermal resistance</topic><topic>U2J</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Hayes, J. Hunter</creatorcontrib><creatorcontrib>Bultitude, John</creatorcontrib><creatorcontrib>Templeton, Allen</creatorcontrib><creatorcontrib>Laps, Mark</creatorcontrib><creatorcontrib>Schmidt, Axel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hayes, J. Hunter</au><au>Bultitude, John</au><au>Templeton, Allen</au><au>Laps, Mark</au><au>Schmidt, Axel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Steady-State Heat Transfer in Class I MLCCs for Resonant Power Converter Applications</atitle><btitle>2022 IEEE Applied Power Electronics Conference and Exposition (APEC)</btitle><stitle>APEC</stitle><date>2022-03-20</date><risdate>2022</risdate><spage>217</spage><epage>224</epage><pages>217-224</pages><eissn>2470-6647</eissn><eisbn>1665406887</eisbn><eisbn>9781665406888</eisbn><abstract>Resonant power converters utilize Class I multilayer ceramic capacitors (MLCCs) to create resonant LC circuits which enable power conversion at high levels of efficiency. MLCCs in such an application will dissipate power which causes component temperatures to rise. Loss in the dielectric and electrodes are the primary contributors to this heat generation, and the dominant loss mechanism depends on the frequency of operation. Heat generated by the MLCC is conducted by the metal electrodes to the terminations of the MLCC. From the terminations, heat is transferred into the PCB assembly and surrounding environment. An efficient thermal management solution is required to ensure the MLCC device temperature does not exceed the maximum allowable temperature rise for the part. This paper seeks to explain how MLCC construction methods and operating conditions effect the way heat is generated in the MLCC and transferred through the MLCC structure into the external environment. A thermal resistance model and an in-situ method for estimating the power dissipation and thermal resistance of MLCCs is also presented.</abstract><pub>IEEE</pub><doi>10.1109/APEC43599.2022.9773431</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2470-6647
ispartof 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 2022, p.217-224
issn 2470-6647
language eng
recordid cdi_ieee_primary_9773431
source IEEE Xplore All Conference Series
subjects C0G
Capacitance
Capacitor
Ceramic
Class 1
Class I
Dielectric losses
Electrodes
ESR
Heat Transfer
MLCC
Modeling
NP0
Resonant Converter
RLC circuits
Thermal Management
Thermal management of electronics
Thermal resistance
U2J
Voltage
title Steady-State Heat Transfer in Class I MLCCs for Resonant Power Converter Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Steady-State%20Heat%20Transfer%20in%20Class%20I%20MLCCs%20for%20Resonant%20Power%20Converter%20Applications&rft.btitle=2022%20IEEE%20Applied%20Power%20Electronics%20Conference%20and%20Exposition%20(APEC)&rft.au=Hayes,%20J.%20Hunter&rft.date=2022-03-20&rft.spage=217&rft.epage=224&rft.pages=217-224&rft.eissn=2470-6647&rft_id=info:doi/10.1109/APEC43599.2022.9773431&rft.eisbn=1665406887&rft.eisbn_list=9781665406888&rft_dat=%3Cieee_CHZPO%3E9773431%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-41649e6de520320d77d22cacb6de1ab14829428b639fe34d1cd816f0030c3fbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9773431&rfr_iscdi=true