Loading…
MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification
Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectr...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393 |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Song, Tiecheng Wang, Yuanlin Gao, Chenqiang Chen, Haonan Li, Jun |
description | Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples. |
doi_str_mv | 10.1109/TGRS.2022.3176216 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9777719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9777719</ieee_id><sourcerecordid>2672099782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHwJ-NyZS5uk8W0O3QbdBNv3kHapZta1Jhlj396WDe_ljuP3P7gfQvdAJgBEPhXzj3xCCaWTGASnwC_QCBhLI8KT5BKNCEge0VTSa3Tj_ZYQSBiIEfKrPJuun_EUF4c2enF6V33h1b4JdmOdqYJtd7rBedePTjdR3ulg-0WWFys8DcHsBgKvTTi07hvXrcOLY2ecPwfw8kd_GjxrtPe2tpUe8Ft0VevGm7tzH6Pi7bWYLaLsfb6cTbOoojIOUVrGdUmACrmpoeIl1wJ0yqXUnPeEAJaUaaI125iKGU0MEM4Y6JgQVsYyHqPH09nOtb9744PatnvXv-MV5YISKUVKewpOVOVa752pVefsj3ZHBUQNatWgVg1q1Vltn3k4Zawx5p-Xoi-Q8R-RcXU7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672099782</pqid></control><display><type>article</type><title>MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification</title><source>IEEE Xplore (Online service)</source><creator>Song, Tiecheng ; Wang, Yuanlin ; Gao, Chenqiang ; Chen, Haonan ; Li, Jun</creator><creatorcontrib>Song, Tiecheng ; Wang, Yuanlin ; Gao, Chenqiang ; Chen, Haonan ; Li, Jun</creatorcontrib><description>Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3176216</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attention ; Classification ; Convolutional neural networks ; Deep learning ; Entropy ; Feature extraction ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Logic gates ; Long short-term memory ; long short-term memory (LSTM) ; Machine learning ; Modelling ; Neural networks ; Principal component analysis ; recurrent neural network (RNN) ; Recurrent neural networks ; Spatial dependencies ; Spatial distribution ; Spatial memory ; spectral–spatial feature ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393</citedby><cites>FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393</cites><orcidid>0000-0003-1613-9448 ; 0000-0003-1264-2812 ; 0000-0002-9795-3064 ; 0000-0003-4174-4148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9777719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Song, Tiecheng</creatorcontrib><creatorcontrib>Wang, Yuanlin</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Chen, Haonan</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><title>MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples.</description><subject>Attention</subject><subject>Classification</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Logic gates</subject><subject>Long short-term memory</subject><subject>long short-term memory (LSTM)</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>Spatial dependencies</subject><subject>Spatial distribution</subject><subject>Spatial memory</subject><subject>spectral–spatial feature</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4MoOKcfQHwJ-NyZS5uk8W0O3QbdBNv3kHapZta1Jhlj396WDe_ljuP3P7gfQvdAJgBEPhXzj3xCCaWTGASnwC_QCBhLI8KT5BKNCEge0VTSa3Tj_ZYQSBiIEfKrPJuun_EUF4c2enF6V33h1b4JdmOdqYJtd7rBedePTjdR3ulg-0WWFys8DcHsBgKvTTi07hvXrcOLY2ecPwfw8kd_GjxrtPe2tpUe8Ft0VevGm7tzH6Pi7bWYLaLsfb6cTbOoojIOUVrGdUmACrmpoeIl1wJ0yqXUnPeEAJaUaaI125iKGU0MEM4Y6JgQVsYyHqPH09nOtb9744PatnvXv-MV5YISKUVKewpOVOVa752pVefsj3ZHBUQNatWgVg1q1Vltn3k4Zawx5p-Xoi-Q8R-RcXU7</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Song, Tiecheng</creator><creator>Wang, Yuanlin</creator><creator>Gao, Chenqiang</creator><creator>Chen, Haonan</creator><creator>Li, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1613-9448</orcidid><orcidid>https://orcid.org/0000-0003-1264-2812</orcidid><orcidid>https://orcid.org/0000-0002-9795-3064</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid></search><sort><creationdate>2022</creationdate><title>MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification</title><author>Song, Tiecheng ; Wang, Yuanlin ; Gao, Chenqiang ; Chen, Haonan ; Li, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention</topic><topic>Classification</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Logic gates</topic><topic>Long short-term memory</topic><topic>long short-term memory (LSTM)</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>Spatial dependencies</topic><topic>Spatial distribution</topic><topic>Spatial memory</topic><topic>spectral–spatial feature</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Tiecheng</creatorcontrib><creatorcontrib>Wang, Yuanlin</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Chen, Haonan</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Tiecheng</au><au>Wang, Yuanlin</au><au>Gao, Chenqiang</au><au>Chen, Haonan</au><au>Li, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3176216</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1613-9448</orcidid><orcidid>https://orcid.org/0000-0003-1264-2812</orcidid><orcidid>https://orcid.org/0000-0002-9795-3064</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9777719 |
source | IEEE Xplore (Online service) |
subjects | Attention Classification Convolutional neural networks Deep learning Entropy Feature extraction hyperspectral image (HSI) classification Hyperspectral imaging Image classification Logic gates Long short-term memory long short-term memory (LSTM) Machine learning Modelling Neural networks Principal component analysis recurrent neural network (RNN) Recurrent neural networks Spatial dependencies Spatial distribution Spatial memory spectral–spatial feature Training |
title | MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSLAN:%20A%20Two-Branch%20Multidirectional%20Spectral-Spatial%20LSTM%20Attention%20Network%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Song,%20Tiecheng&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3176216&rft_dat=%3Cproquest_ieee_%3E2672099782%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672099782&rft_id=info:pmid/&rft_ieee_id=9777719&rfr_iscdi=true |