Loading…

MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification

Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14
Main Authors: Song, Tiecheng, Wang, Yuanlin, Gao, Chenqiang, Chen, Haonan, Li, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393
cites cdi_FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Song, Tiecheng
Wang, Yuanlin
Gao, Chenqiang
Chen, Haonan
Li, Jun
description Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples.
doi_str_mv 10.1109/TGRS.2022.3176216
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9777719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9777719</ieee_id><sourcerecordid>2672099782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHwJ-NyZS5uk8W0O3QbdBNv3kHapZta1Jhlj396WDe_ljuP3P7gfQvdAJgBEPhXzj3xCCaWTGASnwC_QCBhLI8KT5BKNCEge0VTSa3Tj_ZYQSBiIEfKrPJuun_EUF4c2enF6V33h1b4JdmOdqYJtd7rBedePTjdR3ulg-0WWFys8DcHsBgKvTTi07hvXrcOLY2ecPwfw8kd_GjxrtPe2tpUe8Ft0VevGm7tzH6Pi7bWYLaLsfb6cTbOoojIOUVrGdUmACrmpoeIl1wJ0yqXUnPeEAJaUaaI125iKGU0MEM4Y6JgQVsYyHqPH09nOtb9744PatnvXv-MV5YISKUVKewpOVOVa752pVefsj3ZHBUQNatWgVg1q1Vltn3k4Zawx5p-Xoi-Q8R-RcXU7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672099782</pqid></control><display><type>article</type><title>MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification</title><source>IEEE Xplore (Online service)</source><creator>Song, Tiecheng ; Wang, Yuanlin ; Gao, Chenqiang ; Chen, Haonan ; Li, Jun</creator><creatorcontrib>Song, Tiecheng ; Wang, Yuanlin ; Gao, Chenqiang ; Chen, Haonan ; Li, Jun</creatorcontrib><description>Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3176216</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attention ; Classification ; Convolutional neural networks ; Deep learning ; Entropy ; Feature extraction ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Logic gates ; Long short-term memory ; long short-term memory (LSTM) ; Machine learning ; Modelling ; Neural networks ; Principal component analysis ; recurrent neural network (RNN) ; Recurrent neural networks ; Spatial dependencies ; Spatial distribution ; Spatial memory ; spectral–spatial feature ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393</citedby><cites>FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393</cites><orcidid>0000-0003-1613-9448 ; 0000-0003-1264-2812 ; 0000-0002-9795-3064 ; 0000-0003-4174-4148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9777719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Song, Tiecheng</creatorcontrib><creatorcontrib>Wang, Yuanlin</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Chen, Haonan</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><title>MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples.</description><subject>Attention</subject><subject>Classification</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Logic gates</subject><subject>Long short-term memory</subject><subject>long short-term memory (LSTM)</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>Spatial dependencies</subject><subject>Spatial distribution</subject><subject>Spatial memory</subject><subject>spectral–spatial feature</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4MoOKcfQHwJ-NyZS5uk8W0O3QbdBNv3kHapZta1Jhlj396WDe_ljuP3P7gfQvdAJgBEPhXzj3xCCaWTGASnwC_QCBhLI8KT5BKNCEge0VTSa3Tj_ZYQSBiIEfKrPJuun_EUF4c2enF6V33h1b4JdmOdqYJtd7rBedePTjdR3ulg-0WWFys8DcHsBgKvTTi07hvXrcOLY2ecPwfw8kd_GjxrtPe2tpUe8Ft0VevGm7tzH6Pi7bWYLaLsfb6cTbOoojIOUVrGdUmACrmpoeIl1wJ0yqXUnPeEAJaUaaI125iKGU0MEM4Y6JgQVsYyHqPH09nOtb9744PatnvXv-MV5YISKUVKewpOVOVa752pVefsj3ZHBUQNatWgVg1q1Vltn3k4Zawx5p-Xoi-Q8R-RcXU7</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Song, Tiecheng</creator><creator>Wang, Yuanlin</creator><creator>Gao, Chenqiang</creator><creator>Chen, Haonan</creator><creator>Li, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1613-9448</orcidid><orcidid>https://orcid.org/0000-0003-1264-2812</orcidid><orcidid>https://orcid.org/0000-0002-9795-3064</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid></search><sort><creationdate>2022</creationdate><title>MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification</title><author>Song, Tiecheng ; Wang, Yuanlin ; Gao, Chenqiang ; Chen, Haonan ; Li, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention</topic><topic>Classification</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Logic gates</topic><topic>Long short-term memory</topic><topic>long short-term memory (LSTM)</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>Spatial dependencies</topic><topic>Spatial distribution</topic><topic>Spatial memory</topic><topic>spectral–spatial feature</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Tiecheng</creatorcontrib><creatorcontrib>Wang, Yuanlin</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Chen, Haonan</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Tiecheng</au><au>Wang, Yuanlin</au><au>Gao, Chenqiang</au><au>Chen, Haonan</au><au>Li, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3176216</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1613-9448</orcidid><orcidid>https://orcid.org/0000-0003-1264-2812</orcidid><orcidid>https://orcid.org/0000-0002-9795-3064</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9777719
source IEEE Xplore (Online service)
subjects Attention
Classification
Convolutional neural networks
Deep learning
Entropy
Feature extraction
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Logic gates
Long short-term memory
long short-term memory (LSTM)
Machine learning
Modelling
Neural networks
Principal component analysis
recurrent neural network (RNN)
Recurrent neural networks
Spatial dependencies
Spatial distribution
Spatial memory
spectral–spatial feature
Training
title MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSLAN:%20A%20Two-Branch%20Multidirectional%20Spectral-Spatial%20LSTM%20Attention%20Network%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Song,%20Tiecheng&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3176216&rft_dat=%3Cproquest_ieee_%3E2672099782%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-8b3fb01279df1c6b6a71a8699a66c297154b84aa5dec5ea0e106551a3005b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672099782&rft_id=info:pmid/&rft_ieee_id=9777719&rfr_iscdi=true