Loading…
Novel Formulations of Multireflections and Their Applications to High-Speed Channel Design
Reflection theory has been long established for over decades targeted at microwave and radio frequency (RF) applications. With ultra-high-bandwidth applications emerging, such as 112 Gb/s and higher speed Ethernet protocols, discontinuities in high-speed channels negatively impact signal quality, wh...
Saved in:
Published in: | IEEE transactions on signal and power integrity 2022, Vol.1, p.43-54 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reflection theory has been long established for over decades targeted at microwave and radio frequency (RF) applications. With ultra-high-bandwidth applications emerging, such as 112 Gb/s and higher speed Ethernet protocols, discontinuities in high-speed channels negatively impact signal quality, where reflections become one of the most critical concerns in high-speed designs. In this article, for the first time, we analyzed the traditional reflection theory and proposed and verified a new formulation, which exhibits the reflection-related parameters explicitly, indicating where design optimization can be made for high-bandwidth applications using the backtracked propagation method. Our closed-form formulation is applied to high-speed channel examples, where effective mitigation of negative impact from reflections on signal integrity can be identified to be used as a prelayout channel design guide. Our proposed formulation of the reflection theory provides more accurate prediction of high-speed channel behavior to minimize the negative signal integrity impact from reflections. |
---|---|
ISSN: | 2768-1866 2768-1866 |
DOI: | 10.1109/TSIPI.2022.3176592 |