Loading…
3D Protoacoustic Imaging through a Planar Ultrasound Array: A Simulation Workflow
Bragg peak range uncertainties are a persistent constraint in proton therapy. Pulsed proton beams generate protoacoustic emissions proportional to absorbed proton energy, thereby encoding dosimetry information in a detectable acoustic wave. Here, we seek to derive and model 3D protoacoustic imaging...
Saved in:
Published in: | IEEE transactions on radiation and plasma medical sciences 2022-05, p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on radiation and plasma medical sciences |
container_volume | |
creator | Samant, Pratik Trevisi, Luis M. Chen, Yong Zwart, Townsend Xiang, Liangzhong |
description | Bragg peak range uncertainties are a persistent constraint in proton therapy. Pulsed proton beams generate protoacoustic emissions proportional to absorbed proton energy, thereby encoding dosimetry information in a detectable acoustic wave. Here, we seek to derive and model 3D protoacoustic imaging with an ultrasound array and examine the frequency characteristics of protoacoustic emissions. A formalism is presented through which protoacoustic signals can be characterized considering transducer bandwidth as well as pulse duration of the incident beam. We have also collected an experimental proton beam intensity signal from a Mevion S250 clinical machine to analyze our formalism. We also show that proton-acoustic image reconstruction is possible even when the noise amplitude is larger than the signal amplitude on individual transducers. We find that a 4µs Gaussian proton pulse can generate a signal in the range of MHz as long as the spatial heating function has sufficiently high temperature gradients. |
doi_str_mv | 10.1109/TRPMS.2022.3177236 |
format | article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9782696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9782696</ieee_id><sourcerecordid>9782696</sourcerecordid><originalsourceid>FETCH-ieee_primary_97826963</originalsourceid><addsrcrecordid>eNp9jstqwkAUQIei0KD5gXZzf8A4D5t0ugtVsQshvnAplzSJ004y5c6E4t_ronTp6hw4m8PYk-CJEFxP99tivUsklzJRIsukSh9YJGepnmSKq8G_C_HIYu-_OOcie5V69hKxjZpDQS44LF3vgynho8XGdA2EM7m-OQNCYbFDgoMNhN713SfkRHh5gxx2pu0tBuM6ODr6rq37HbNhjdZX8R9H7Hm52L-vJqaqqtMPmRbpctK3gVSn6n69Ars8QNk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Protoacoustic Imaging through a Planar Ultrasound Array: A Simulation Workflow</title><source>IEEE Xplore (Online service)</source><creator>Samant, Pratik ; Trevisi, Luis M. ; Chen, Yong ; Zwart, Townsend ; Xiang, Liangzhong</creator><creatorcontrib>Samant, Pratik ; Trevisi, Luis M. ; Chen, Yong ; Zwart, Townsend ; Xiang, Liangzhong</creatorcontrib><description>Bragg peak range uncertainties are a persistent constraint in proton therapy. Pulsed proton beams generate protoacoustic emissions proportional to absorbed proton energy, thereby encoding dosimetry information in a detectable acoustic wave. Here, we seek to derive and model 3D protoacoustic imaging with an ultrasound array and examine the frequency characteristics of protoacoustic emissions. A formalism is presented through which protoacoustic signals can be characterized considering transducer bandwidth as well as pulse duration of the incident beam. We have also collected an experimental proton beam intensity signal from a Mevion S250 clinical machine to analyze our formalism. We also show that proton-acoustic image reconstruction is possible even when the noise amplitude is larger than the signal amplitude on individual transducers. We find that a 4µs Gaussian proton pulse can generate a signal in the range of MHz as long as the spatial heating function has sufficiently high temperature gradients.</description><identifier>ISSN: 2469-7311</identifier><identifier>EISSN: 2469-7303</identifier><identifier>DOI: 10.1109/TRPMS.2022.3177236</identifier><identifier>CODEN: ITRPFI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Analytical ; Analytical dosimetry ; Image guided therapy ; Image guided therapy devices ; Mathematical models ; Particle beams ; Protons ; Radiation Therapy ; Solid modeling ; Three-dimensional displays ; Transducers</subject><ispartof>IEEE transactions on radiation and plasma medical sciences, 2022-05, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9782696$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Samant, Pratik</creatorcontrib><creatorcontrib>Trevisi, Luis M.</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zwart, Townsend</creatorcontrib><creatorcontrib>Xiang, Liangzhong</creatorcontrib><title>3D Protoacoustic Imaging through a Planar Ultrasound Array: A Simulation Workflow</title><title>IEEE transactions on radiation and plasma medical sciences</title><addtitle>TRPMS</addtitle><description>Bragg peak range uncertainties are a persistent constraint in proton therapy. Pulsed proton beams generate protoacoustic emissions proportional to absorbed proton energy, thereby encoding dosimetry information in a detectable acoustic wave. Here, we seek to derive and model 3D protoacoustic imaging with an ultrasound array and examine the frequency characteristics of protoacoustic emissions. A formalism is presented through which protoacoustic signals can be characterized considering transducer bandwidth as well as pulse duration of the incident beam. We have also collected an experimental proton beam intensity signal from a Mevion S250 clinical machine to analyze our formalism. We also show that proton-acoustic image reconstruction is possible even when the noise amplitude is larger than the signal amplitude on individual transducers. We find that a 4µs Gaussian proton pulse can generate a signal in the range of MHz as long as the spatial heating function has sufficiently high temperature gradients.</description><subject>Acoustics</subject><subject>Analytical</subject><subject>Analytical dosimetry</subject><subject>Image guided therapy</subject><subject>Image guided therapy devices</subject><subject>Mathematical models</subject><subject>Particle beams</subject><subject>Protons</subject><subject>Radiation Therapy</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Transducers</subject><issn>2469-7311</issn><issn>2469-7303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9jstqwkAUQIei0KD5gXZzf8A4D5t0ugtVsQshvnAplzSJ004y5c6E4t_ronTp6hw4m8PYk-CJEFxP99tivUsklzJRIsukSh9YJGepnmSKq8G_C_HIYu-_OOcie5V69hKxjZpDQS44LF3vgynho8XGdA2EM7m-OQNCYbFDgoMNhN713SfkRHh5gxx2pu0tBuM6ODr6rq37HbNhjdZX8R9H7Hm52L-vJqaqqtMPmRbpctK3gVSn6n69Ars8QNk</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Samant, Pratik</creator><creator>Trevisi, Luis M.</creator><creator>Chen, Yong</creator><creator>Zwart, Townsend</creator><creator>Xiang, Liangzhong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>20220525</creationdate><title>3D Protoacoustic Imaging through a Planar Ultrasound Array: A Simulation Workflow</title><author>Samant, Pratik ; Trevisi, Luis M. ; Chen, Yong ; Zwart, Townsend ; Xiang, Liangzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_97826963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Analytical</topic><topic>Analytical dosimetry</topic><topic>Image guided therapy</topic><topic>Image guided therapy devices</topic><topic>Mathematical models</topic><topic>Particle beams</topic><topic>Protons</topic><topic>Radiation Therapy</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samant, Pratik</creatorcontrib><creatorcontrib>Trevisi, Luis M.</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zwart, Townsend</creatorcontrib><creatorcontrib>Xiang, Liangzhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><jtitle>IEEE transactions on radiation and plasma medical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samant, Pratik</au><au>Trevisi, Luis M.</au><au>Chen, Yong</au><au>Zwart, Townsend</au><au>Xiang, Liangzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Protoacoustic Imaging through a Planar Ultrasound Array: A Simulation Workflow</atitle><jtitle>IEEE transactions on radiation and plasma medical sciences</jtitle><stitle>TRPMS</stitle><date>2022-05-25</date><risdate>2022</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2469-7311</issn><eissn>2469-7303</eissn><coden>ITRPFI</coden><abstract>Bragg peak range uncertainties are a persistent constraint in proton therapy. Pulsed proton beams generate protoacoustic emissions proportional to absorbed proton energy, thereby encoding dosimetry information in a detectable acoustic wave. Here, we seek to derive and model 3D protoacoustic imaging with an ultrasound array and examine the frequency characteristics of protoacoustic emissions. A formalism is presented through which protoacoustic signals can be characterized considering transducer bandwidth as well as pulse duration of the incident beam. We have also collected an experimental proton beam intensity signal from a Mevion S250 clinical machine to analyze our formalism. We also show that proton-acoustic image reconstruction is possible even when the noise amplitude is larger than the signal amplitude on individual transducers. We find that a 4µs Gaussian proton pulse can generate a signal in the range of MHz as long as the spatial heating function has sufficiently high temperature gradients.</abstract><pub>IEEE</pub><doi>10.1109/TRPMS.2022.3177236</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-7311 |
ispartof | IEEE transactions on radiation and plasma medical sciences, 2022-05, p.1-1 |
issn | 2469-7311 2469-7303 |
language | eng |
recordid | cdi_ieee_primary_9782696 |
source | IEEE Xplore (Online service) |
subjects | Acoustics Analytical Analytical dosimetry Image guided therapy Image guided therapy devices Mathematical models Particle beams Protons Radiation Therapy Solid modeling Three-dimensional displays Transducers |
title | 3D Protoacoustic Imaging through a Planar Ultrasound Array: A Simulation Workflow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Protoacoustic%20Imaging%20through%20a%20Planar%20Ultrasound%20Array:%20A%20Simulation%20Workflow&rft.jtitle=IEEE%20transactions%20on%20radiation%20and%20plasma%20medical%20sciences&rft.au=Samant,%20Pratik&rft.date=2022-05-25&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2469-7311&rft.eissn=2469-7303&rft.coden=ITRPFI&rft_id=info:doi/10.1109/TRPMS.2022.3177236&rft_dat=%3Cieee%3E9782696%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_97826963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9782696&rfr_iscdi=true |