Loading…

Anomaly Detection in Centrifugal Pumps Using Model Based Approach

In today's society, technological breakthroughs have led to the automation of most industries in order to ensure smooth operations and minimize human interaction. The automation has led to challenges in an important sector called Fault detection and diagnosis. Rather than univariate alerts, fau...

Full description

Saved in:
Bibliographic Details
Main Authors: Kumar, Swetha R, U S, Iniyal, V, Harshitha, M, Abinaya, J, Janani, D, Jayaprasanth
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 433
container_issue
container_start_page 427
container_title
container_volume 1
creator Kumar, Swetha R
U S, Iniyal
V, Harshitha
M, Abinaya
J, Janani
D, Jayaprasanth
description In today's society, technological breakthroughs have led to the automation of most industries in order to ensure smooth operations and minimize human interaction. The automation has led to challenges in an important sector called Fault detection and diagnosis. Rather than univariate alerts, fault detection and diagnostics focus on abnormal situations, which is crucial for maintaining optimum operating conditions and anticipating chemical process hazards. Model-based and process history-based fault detection and diagnosis are the two types of fault detection and diagnosis, with the second being more commonly referred to as data-based. Model-based methods are often based on a fundamental grasp of the process's physics. Using a model-based approach, this paper tries to estimate and identify the types of problems in centrifugal pumps. The pump dynamics are estimated using a system identification approach in this paper. The outcomes of the model estimations are then summarized. Estimated and real values are compared while creating residues. Studies are carried out to look into the consequences in both faultless and faulty situations.
doi_str_mv 10.1109/ICACCS54159.2022.9785349
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9785349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785349</ieee_id><sourcerecordid>9785349</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-1f95e1acd689ab462f87774a5da7531ee6131306ad95cb83df17ec4052d621323</originalsourceid><addsrcrecordid>eNotj8lOwzAURQ0SElXJF7DxDyT4efYyhKFIRSBB15UbvxSjTIrTRf-eSHR17uroHkIosAKAuYe3qqyqLyVBuYIzzgtnrBLSXZFsWaC1kmyBuiYrrozKDbf2lmQp_TLGBFhnrV2RsuyHzrdn-oQz1nMcehp7WmE_T7E5HX1LP0_dmOguxf5I34eALX30CQMtx3EafP1zR24a3ybMLlyT3cvzd7XJtx-vy8dtHgHsnEPjFIKvg7bOH6TmjTXGSK-CN0oAogYBgmkfnKoPVoQGDNaSKR40B8HFmtz_eyMi7scpdn467y_R4g9EGEtE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Anomaly Detection in Centrifugal Pumps Using Model Based Approach</title><source>IEEE Xplore All Conference Series</source><creator>Kumar, Swetha R ; U S, Iniyal ; V, Harshitha ; M, Abinaya ; J, Janani ; D, Jayaprasanth</creator><creatorcontrib>Kumar, Swetha R ; U S, Iniyal ; V, Harshitha ; M, Abinaya ; J, Janani ; D, Jayaprasanth</creatorcontrib><description>In today's society, technological breakthroughs have led to the automation of most industries in order to ensure smooth operations and minimize human interaction. The automation has led to challenges in an important sector called Fault detection and diagnosis. Rather than univariate alerts, fault detection and diagnostics focus on abnormal situations, which is crucial for maintaining optimum operating conditions and anticipating chemical process hazards. Model-based and process history-based fault detection and diagnosis are the two types of fault detection and diagnosis, with the second being more commonly referred to as data-based. Model-based methods are often based on a fundamental grasp of the process's physics. Using a model-based approach, this paper tries to estimate and identify the types of problems in centrifugal pumps. The pump dynamics are estimated using a system identification approach in this paper. The outcomes of the model estimations are then summarized. Estimated and real values are compared while creating residues. Studies are carried out to look into the consequences in both faultless and faulty situations.</description><identifier>EISSN: 2575-7288</identifier><identifier>EISBN: 9781665408165</identifier><identifier>EISBN: 1665408162</identifier><identifier>DOI: 10.1109/ICACCS54159.2022.9785349</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical redundancy ; Automation ; Centrifugal pumps ; Computational modeling ; Estimation ; Fault detection ; Fault diagnosis ; Industries ; Pumps ; Residual generation ; System identification</subject><ispartof>2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), 2022, Vol.1, p.427-433</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785349$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9785349$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumar, Swetha R</creatorcontrib><creatorcontrib>U S, Iniyal</creatorcontrib><creatorcontrib>V, Harshitha</creatorcontrib><creatorcontrib>M, Abinaya</creatorcontrib><creatorcontrib>J, Janani</creatorcontrib><creatorcontrib>D, Jayaprasanth</creatorcontrib><title>Anomaly Detection in Centrifugal Pumps Using Model Based Approach</title><title>2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS)</title><addtitle>ICACCS</addtitle><description>In today's society, technological breakthroughs have led to the automation of most industries in order to ensure smooth operations and minimize human interaction. The automation has led to challenges in an important sector called Fault detection and diagnosis. Rather than univariate alerts, fault detection and diagnostics focus on abnormal situations, which is crucial for maintaining optimum operating conditions and anticipating chemical process hazards. Model-based and process history-based fault detection and diagnosis are the two types of fault detection and diagnosis, with the second being more commonly referred to as data-based. Model-based methods are often based on a fundamental grasp of the process's physics. Using a model-based approach, this paper tries to estimate and identify the types of problems in centrifugal pumps. The pump dynamics are estimated using a system identification approach in this paper. The outcomes of the model estimations are then summarized. Estimated and real values are compared while creating residues. Studies are carried out to look into the consequences in both faultless and faulty situations.</description><subject>Analytical redundancy</subject><subject>Automation</subject><subject>Centrifugal pumps</subject><subject>Computational modeling</subject><subject>Estimation</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Industries</subject><subject>Pumps</subject><subject>Residual generation</subject><subject>System identification</subject><issn>2575-7288</issn><isbn>9781665408165</isbn><isbn>1665408162</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8lOwzAURQ0SElXJF7DxDyT4efYyhKFIRSBB15UbvxSjTIrTRf-eSHR17uroHkIosAKAuYe3qqyqLyVBuYIzzgtnrBLSXZFsWaC1kmyBuiYrrozKDbf2lmQp_TLGBFhnrV2RsuyHzrdn-oQz1nMcehp7WmE_T7E5HX1LP0_dmOguxf5I34eALX30CQMtx3EafP1zR24a3ybMLlyT3cvzd7XJtx-vy8dtHgHsnEPjFIKvg7bOH6TmjTXGSK-CN0oAogYBgmkfnKoPVoQGDNaSKR40B8HFmtz_eyMi7scpdn467y_R4g9EGEtE</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>Kumar, Swetha R</creator><creator>U S, Iniyal</creator><creator>V, Harshitha</creator><creator>M, Abinaya</creator><creator>J, Janani</creator><creator>D, Jayaprasanth</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220325</creationdate><title>Anomaly Detection in Centrifugal Pumps Using Model Based Approach</title><author>Kumar, Swetha R ; U S, Iniyal ; V, Harshitha ; M, Abinaya ; J, Janani ; D, Jayaprasanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-1f95e1acd689ab462f87774a5da7531ee6131306ad95cb83df17ec4052d621323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical redundancy</topic><topic>Automation</topic><topic>Centrifugal pumps</topic><topic>Computational modeling</topic><topic>Estimation</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Industries</topic><topic>Pumps</topic><topic>Residual generation</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Swetha R</creatorcontrib><creatorcontrib>U S, Iniyal</creatorcontrib><creatorcontrib>V, Harshitha</creatorcontrib><creatorcontrib>M, Abinaya</creatorcontrib><creatorcontrib>J, Janani</creatorcontrib><creatorcontrib>D, Jayaprasanth</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Swetha R</au><au>U S, Iniyal</au><au>V, Harshitha</au><au>M, Abinaya</au><au>J, Janani</au><au>D, Jayaprasanth</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Anomaly Detection in Centrifugal Pumps Using Model Based Approach</atitle><btitle>2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS)</btitle><stitle>ICACCS</stitle><date>2022-03-25</date><risdate>2022</risdate><volume>1</volume><spage>427</spage><epage>433</epage><pages>427-433</pages><eissn>2575-7288</eissn><eisbn>9781665408165</eisbn><eisbn>1665408162</eisbn><abstract>In today's society, technological breakthroughs have led to the automation of most industries in order to ensure smooth operations and minimize human interaction. The automation has led to challenges in an important sector called Fault detection and diagnosis. Rather than univariate alerts, fault detection and diagnostics focus on abnormal situations, which is crucial for maintaining optimum operating conditions and anticipating chemical process hazards. Model-based and process history-based fault detection and diagnosis are the two types of fault detection and diagnosis, with the second being more commonly referred to as data-based. Model-based methods are often based on a fundamental grasp of the process's physics. Using a model-based approach, this paper tries to estimate and identify the types of problems in centrifugal pumps. The pump dynamics are estimated using a system identification approach in this paper. The outcomes of the model estimations are then summarized. Estimated and real values are compared while creating residues. Studies are carried out to look into the consequences in both faultless and faulty situations.</abstract><pub>IEEE</pub><doi>10.1109/ICACCS54159.2022.9785349</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-7288
ispartof 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), 2022, Vol.1, p.427-433
issn 2575-7288
language eng
recordid cdi_ieee_primary_9785349
source IEEE Xplore All Conference Series
subjects Analytical redundancy
Automation
Centrifugal pumps
Computational modeling
Estimation
Fault detection
Fault diagnosis
Industries
Pumps
Residual generation
System identification
title Anomaly Detection in Centrifugal Pumps Using Model Based Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Anomaly%20Detection%20in%20Centrifugal%20Pumps%20Using%20Model%20Based%20Approach&rft.btitle=2022%208th%20International%20Conference%20on%20Advanced%20Computing%20and%20Communication%20Systems%20(ICACCS)&rft.au=Kumar,%20Swetha%20R&rft.date=2022-03-25&rft.volume=1&rft.spage=427&rft.epage=433&rft.pages=427-433&rft.eissn=2575-7288&rft_id=info:doi/10.1109/ICACCS54159.2022.9785349&rft.eisbn=9781665408165&rft.eisbn_list=1665408162&rft_dat=%3Cieee_CHZPO%3E9785349%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-1f95e1acd689ab462f87774a5da7531ee6131306ad95cb83df17ec4052d621323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9785349&rfr_iscdi=true