Loading…
Very Low-Resolution Moving Vehicle Detection in Satellite Videos
This paper proposes a practical end-to-end neural network framework to detect tiny moving vehicles in satellite videos with low imaging quality. Some instability factors such as illumination changes, motion blurs, and low contrast to the cluttered background make it difficult to distinguish true obj...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022-01, Vol.60, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-4f48c717155e182a41d06b145fcbd1344dbb38c4020504a98478c2647b25b9d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-4f48c717155e182a41d06b145fcbd1344dbb38c4020504a98478c2647b25b9d63 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Pi, Zhaoliang Jiao, Licheng Liu, Fang Liu, Xu Li, Lingling Hou, Biao Yang, Shuyuan |
description | This paper proposes a practical end-to-end neural network framework to detect tiny moving vehicles in satellite videos with low imaging quality. Some instability factors such as illumination changes, motion blurs, and low contrast to the cluttered background make it difficult to distinguish true objects from noise and other point-shaped distractors. Moving vehicle detection in satellite videos can be carried out based on background subtraction or frame differencing. However, these methods are prone to produce lots of false alarms and miss many positive targets. Appearance-based detection can be an alternative but is not well-suited since classifier models are of weak discriminative power for the vehicles in top view at such low resolution. This article addresses these issues by integrating motion information from adjacent frames to facilitate the extraction of semantic features and incorporating the Transformer to refine the features for key points estimation and scale prediction. Our proposed model can well identify the actual moving targets and suppress interference from stationary targets or background. The experiments and evaluations using satellite videos show that the proposed approach can accurately locate the targets under weak feature attributes and improve the detection performance in complex scenarios. |
doi_str_mv | 10.1109/TGRS.2022.3179502 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9785979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785979</ieee_id><sourcerecordid>2676782475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4f48c717155e182a41d06b145fcbd1344dbb38c4020504a98478c2647b25b9d63</originalsourceid><addsrcrecordid>eNo9kEFOwzAQRS0EEqVwAMQmEusUj2PH9g5UoCAVIbWlWytxJuAqxMVOQb09Ka1YzWLen_l6hFwCHQFQfbOYzOYjRhkbZSC1oOyIDEAIldKc82MyoKDzlCnNTslZjCtKgQuQA3K7xLBNpv4nnWH0zaZzvk1e_Ldr35MlfjjbYHKPHdq_hWuTedFh07gOk6Wr0MdzclIXTcSLwxySt8eHxfgpnb5Onsd309QynXUpr7myEmTfCUGxgkNF87IvUduygozzqiwzZTllVFBeaMWlsiznsmSi1FWeDcn1_u46-K8Nxs6s_Ca0_UvDcplLxbgUPQV7ygYfY8DarIP7LMLWADU7UWYnyuxEmYOoPnO1zzhE_Oe1VEJLnf0C0eJijw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676782475</pqid></control><display><type>article</type><title>Very Low-Resolution Moving Vehicle Detection in Satellite Videos</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pi, Zhaoliang ; Jiao, Licheng ; Liu, Fang ; Liu, Xu ; Li, Lingling ; Hou, Biao ; Yang, Shuyuan</creator><creatorcontrib>Pi, Zhaoliang ; Jiao, Licheng ; Liu, Fang ; Liu, Xu ; Li, Lingling ; Hou, Biao ; Yang, Shuyuan</creatorcontrib><description>This paper proposes a practical end-to-end neural network framework to detect tiny moving vehicles in satellite videos with low imaging quality. Some instability factors such as illumination changes, motion blurs, and low contrast to the cluttered background make it difficult to distinguish true objects from noise and other point-shaped distractors. Moving vehicle detection in satellite videos can be carried out based on background subtraction or frame differencing. However, these methods are prone to produce lots of false alarms and miss many positive targets. Appearance-based detection can be an alternative but is not well-suited since classifier models are of weak discriminative power for the vehicles in top view at such low resolution. This article addresses these issues by integrating motion information from adjacent frames to facilitate the extraction of semantic features and incorporating the Transformer to refine the features for key points estimation and scale prediction. Our proposed model can well identify the actual moving targets and suppress interference from stationary targets or background. The experiments and evaluations using satellite videos show that the proposed approach can accurately locate the targets under weak feature attributes and improve the detection performance in complex scenarios.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3179502</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Background noise ; Detection ; end-to-end neural network framework ; False alarms ; Feature extraction ; integrate motion information ; Interference ; low-resolution ; Motion stability ; Moving targets ; moving vehicle ; Neural networks ; Object recognition ; Production methods ; Resolution ; satellite video ; Satellites ; Semantics ; Subtraction ; Target detection ; Transformer ; Transformers ; Vehicle detection ; Vehicles ; Video ; Videos</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4f48c717155e182a41d06b145fcbd1344dbb38c4020504a98478c2647b25b9d63</citedby><cites>FETCH-LOGICAL-c293t-4f48c717155e182a41d06b145fcbd1344dbb38c4020504a98478c2647b25b9d63</cites><orcidid>0000-0002-4796-5737 ; 0000-0002-5669-9354 ; 0000-0002-6130-2518 ; 0000-0002-8780-5455 ; 0000-0002-6518-6358 ; 0000-0003-3354-9617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Pi, Zhaoliang</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Hou, Biao</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><title>Very Low-Resolution Moving Vehicle Detection in Satellite Videos</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper proposes a practical end-to-end neural network framework to detect tiny moving vehicles in satellite videos with low imaging quality. Some instability factors such as illumination changes, motion blurs, and low contrast to the cluttered background make it difficult to distinguish true objects from noise and other point-shaped distractors. Moving vehicle detection in satellite videos can be carried out based on background subtraction or frame differencing. However, these methods are prone to produce lots of false alarms and miss many positive targets. Appearance-based detection can be an alternative but is not well-suited since classifier models are of weak discriminative power for the vehicles in top view at such low resolution. This article addresses these issues by integrating motion information from adjacent frames to facilitate the extraction of semantic features and incorporating the Transformer to refine the features for key points estimation and scale prediction. Our proposed model can well identify the actual moving targets and suppress interference from stationary targets or background. The experiments and evaluations using satellite videos show that the proposed approach can accurately locate the targets under weak feature attributes and improve the detection performance in complex scenarios.</description><subject>Background noise</subject><subject>Detection</subject><subject>end-to-end neural network framework</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>integrate motion information</subject><subject>Interference</subject><subject>low-resolution</subject><subject>Motion stability</subject><subject>Moving targets</subject><subject>moving vehicle</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Production methods</subject><subject>Resolution</subject><subject>satellite video</subject><subject>Satellites</subject><subject>Semantics</subject><subject>Subtraction</subject><subject>Target detection</subject><subject>Transformer</subject><subject>Transformers</subject><subject>Vehicle detection</subject><subject>Vehicles</subject><subject>Video</subject><subject>Videos</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFOwzAQRS0EEqVwAMQmEusUj2PH9g5UoCAVIbWlWytxJuAqxMVOQb09Ka1YzWLen_l6hFwCHQFQfbOYzOYjRhkbZSC1oOyIDEAIldKc82MyoKDzlCnNTslZjCtKgQuQA3K7xLBNpv4nnWH0zaZzvk1e_Ldr35MlfjjbYHKPHdq_hWuTedFh07gOk6Wr0MdzclIXTcSLwxySt8eHxfgpnb5Onsd309QynXUpr7myEmTfCUGxgkNF87IvUduygozzqiwzZTllVFBeaMWlsiznsmSi1FWeDcn1_u46-K8Nxs6s_Ca0_UvDcplLxbgUPQV7ygYfY8DarIP7LMLWADU7UWYnyuxEmYOoPnO1zzhE_Oe1VEJLnf0C0eJijw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Pi, Zhaoliang</creator><creator>Jiao, Licheng</creator><creator>Liu, Fang</creator><creator>Liu, Xu</creator><creator>Li, Lingling</creator><creator>Hou, Biao</creator><creator>Yang, Shuyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0002-8780-5455</orcidid><orcidid>https://orcid.org/0000-0002-6518-6358</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid></search><sort><creationdate>20220101</creationdate><title>Very Low-Resolution Moving Vehicle Detection in Satellite Videos</title><author>Pi, Zhaoliang ; Jiao, Licheng ; Liu, Fang ; Liu, Xu ; Li, Lingling ; Hou, Biao ; Yang, Shuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4f48c717155e182a41d06b145fcbd1344dbb38c4020504a98478c2647b25b9d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Background noise</topic><topic>Detection</topic><topic>end-to-end neural network framework</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>integrate motion information</topic><topic>Interference</topic><topic>low-resolution</topic><topic>Motion stability</topic><topic>Moving targets</topic><topic>moving vehicle</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Production methods</topic><topic>Resolution</topic><topic>satellite video</topic><topic>Satellites</topic><topic>Semantics</topic><topic>Subtraction</topic><topic>Target detection</topic><topic>Transformer</topic><topic>Transformers</topic><topic>Vehicle detection</topic><topic>Vehicles</topic><topic>Video</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pi, Zhaoliang</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Hou, Biao</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pi, Zhaoliang</au><au>Jiao, Licheng</au><au>Liu, Fang</au><au>Liu, Xu</au><au>Li, Lingling</au><au>Hou, Biao</au><au>Yang, Shuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very Low-Resolution Moving Vehicle Detection in Satellite Videos</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper proposes a practical end-to-end neural network framework to detect tiny moving vehicles in satellite videos with low imaging quality. Some instability factors such as illumination changes, motion blurs, and low contrast to the cluttered background make it difficult to distinguish true objects from noise and other point-shaped distractors. Moving vehicle detection in satellite videos can be carried out based on background subtraction or frame differencing. However, these methods are prone to produce lots of false alarms and miss many positive targets. Appearance-based detection can be an alternative but is not well-suited since classifier models are of weak discriminative power for the vehicles in top view at such low resolution. This article addresses these issues by integrating motion information from adjacent frames to facilitate the extraction of semantic features and incorporating the Transformer to refine the features for key points estimation and scale prediction. Our proposed model can well identify the actual moving targets and suppress interference from stationary targets or background. The experiments and evaluations using satellite videos show that the proposed approach can accurately locate the targets under weak feature attributes and improve the detection performance in complex scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3179502</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0002-8780-5455</orcidid><orcidid>https://orcid.org/0000-0002-6518-6358</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9785979 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Background noise Detection end-to-end neural network framework False alarms Feature extraction integrate motion information Interference low-resolution Motion stability Moving targets moving vehicle Neural networks Object recognition Production methods Resolution satellite video Satellites Semantics Subtraction Target detection Transformer Transformers Vehicle detection Vehicles Video Videos |
title | Very Low-Resolution Moving Vehicle Detection in Satellite Videos |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20Low-Resolution%20Moving%20Vehicle%20Detection%20in%20Satellite%20Videos&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Pi,%20Zhaoliang&rft.date=2022-01-01&rft.volume=60&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3179502&rft_dat=%3Cproquest_ieee_%3E2676782475%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-4f48c717155e182a41d06b145fcbd1344dbb38c4020504a98478c2647b25b9d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676782475&rft_id=info:pmid/&rft_ieee_id=9785979&rfr_iscdi=true |