Loading…
Autonomous convergence mechanisms for collaborative crowd-sourced data-modeling
Interoperability remains a central challenge of the Internet of Things (IoT). Standardized data representation can solve this problem. Data model convergence prevents redundancy and fosters reuse. The growth of the IoT demands a high number of data models. Collaborative approaches allow the creation...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Lubben, Christian Pahl, Marc-Oliver |
description | Interoperability remains a central challenge of the Internet of Things (IoT). Standardized data representation can solve this problem. Data model convergence prevents redundancy and fosters reuse. The growth of the IoT demands a high number of data models. Collaborative approaches allow the creation of numerous data models. The question to investigate is: Can assisted distributed model creation improve model convergence?This paper presents an approach to unify IoT data models during creation. It analyzes existing models to find similarities to new model candidates. Similar models shall be reused or extended to prevent information redundancy. Challenges are the accuracy of the similarity analysis and scalability.The evaluation shows linear scalability and high accuracy using a data set containing 1200 automatically converted data models from today's most relevant IoT data modeling initiatives: Project Haystack, IoTSchema, and BrickSchema. |
doi_str_mv | 10.1109/NOMS54207.2022.9789820 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9789820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9789820</ieee_id><sourcerecordid>9789820</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-362f08969dc9e8665956d3187bfba3ded5857ecbd9fdedbd80f6e945297c039a3</originalsourceid><addsrcrecordid>eNotj91KxDAUhKMguK77BIL0BbqeJG2Sc7ks_sFqL9TrJU1O10rbSNKu-PYW3KuZ4YNhhrFbDmvOAe9eq5e3shCg1wKEWKM2aAScsdXsuFJlAQq4PmcLIXWRowa8ZFcpfQEUGiQsWLWZxjCEPkwpc2E4UjzQ4CjryX3aoU19ypoQZ9R1tg7Rju2RMhfDj89TmKIjn3k72rwPnrp2OFyzi8Z2iVYnXbKPh_v37VO-qx6ft5td3nIpx1wq0YBBhd4hmXkolspLbnTd1FZ68qUpNbnaYzOH2htoFGFRCtQOJFq5ZDf_vS0R7b9j29v4uz_9l39VL1H5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autonomous convergence mechanisms for collaborative crowd-sourced data-modeling</title><source>IEEE Xplore All Conference Series</source><creator>Lubben, Christian ; Pahl, Marc-Oliver</creator><creatorcontrib>Lubben, Christian ; Pahl, Marc-Oliver</creatorcontrib><description>Interoperability remains a central challenge of the Internet of Things (IoT). Standardized data representation can solve this problem. Data model convergence prevents redundancy and fosters reuse. The growth of the IoT demands a high number of data models. Collaborative approaches allow the creation of numerous data models. The question to investigate is: Can assisted distributed model creation improve model convergence?This paper presents an approach to unify IoT data models during creation. It analyzes existing models to find similarities to new model candidates. Similar models shall be reused or extended to prevent information redundancy. Challenges are the accuracy of the similarity analysis and scalability.The evaluation shows linear scalability and high accuracy using a data set containing 1200 automatically converted data models from today's most relevant IoT data modeling initiatives: Project Haystack, IoTSchema, and BrickSchema.</description><identifier>EISSN: 2374-9709</identifier><identifier>EISBN: 9781665406017</identifier><identifier>EISBN: 1665406011</identifier><identifier>DOI: 10.1109/NOMS54207.2022.9789820</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Analytical models ; Collaboration ; convergence ; crowdsourcing ; data ; interoperability ; IoT ; modeling ; open ; Redundancy ; Runtime ; Scalability ; Semantics</subject><ispartof>NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, 2022, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9789820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9789820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lubben, Christian</creatorcontrib><creatorcontrib>Pahl, Marc-Oliver</creatorcontrib><title>Autonomous convergence mechanisms for collaborative crowd-sourced data-modeling</title><title>NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium</title><addtitle>NOMS</addtitle><description>Interoperability remains a central challenge of the Internet of Things (IoT). Standardized data representation can solve this problem. Data model convergence prevents redundancy and fosters reuse. The growth of the IoT demands a high number of data models. Collaborative approaches allow the creation of numerous data models. The question to investigate is: Can assisted distributed model creation improve model convergence?This paper presents an approach to unify IoT data models during creation. It analyzes existing models to find similarities to new model candidates. Similar models shall be reused or extended to prevent information redundancy. Challenges are the accuracy of the similarity analysis and scalability.The evaluation shows linear scalability and high accuracy using a data set containing 1200 automatically converted data models from today's most relevant IoT data modeling initiatives: Project Haystack, IoTSchema, and BrickSchema.</description><subject>Adaptation models</subject><subject>Analytical models</subject><subject>Collaboration</subject><subject>convergence</subject><subject>crowdsourcing</subject><subject>data</subject><subject>interoperability</subject><subject>IoT</subject><subject>modeling</subject><subject>open</subject><subject>Redundancy</subject><subject>Runtime</subject><subject>Scalability</subject><subject>Semantics</subject><issn>2374-9709</issn><isbn>9781665406017</isbn><isbn>1665406011</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KxDAUhKMguK77BIL0BbqeJG2Sc7ks_sFqL9TrJU1O10rbSNKu-PYW3KuZ4YNhhrFbDmvOAe9eq5e3shCg1wKEWKM2aAScsdXsuFJlAQq4PmcLIXWRowa8ZFcpfQEUGiQsWLWZxjCEPkwpc2E4UjzQ4CjryX3aoU19ypoQZ9R1tg7Rju2RMhfDj89TmKIjn3k72rwPnrp2OFyzi8Z2iVYnXbKPh_v37VO-qx6ft5td3nIpx1wq0YBBhd4hmXkolspLbnTd1FZ68qUpNbnaYzOH2htoFGFRCtQOJFq5ZDf_vS0R7b9j29v4uz_9l39VL1H5</recordid><startdate>20220425</startdate><enddate>20220425</enddate><creator>Lubben, Christian</creator><creator>Pahl, Marc-Oliver</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220425</creationdate><title>Autonomous convergence mechanisms for collaborative crowd-sourced data-modeling</title><author>Lubben, Christian ; Pahl, Marc-Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-362f08969dc9e8665956d3187bfba3ded5857ecbd9fdedbd80f6e945297c039a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Analytical models</topic><topic>Collaboration</topic><topic>convergence</topic><topic>crowdsourcing</topic><topic>data</topic><topic>interoperability</topic><topic>IoT</topic><topic>modeling</topic><topic>open</topic><topic>Redundancy</topic><topic>Runtime</topic><topic>Scalability</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lubben, Christian</creatorcontrib><creatorcontrib>Pahl, Marc-Oliver</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lubben, Christian</au><au>Pahl, Marc-Oliver</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autonomous convergence mechanisms for collaborative crowd-sourced data-modeling</atitle><btitle>NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium</btitle><stitle>NOMS</stitle><date>2022-04-25</date><risdate>2022</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2374-9709</eissn><eisbn>9781665406017</eisbn><eisbn>1665406011</eisbn><abstract>Interoperability remains a central challenge of the Internet of Things (IoT). Standardized data representation can solve this problem. Data model convergence prevents redundancy and fosters reuse. The growth of the IoT demands a high number of data models. Collaborative approaches allow the creation of numerous data models. The question to investigate is: Can assisted distributed model creation improve model convergence?This paper presents an approach to unify IoT data models during creation. It analyzes existing models to find similarities to new model candidates. Similar models shall be reused or extended to prevent information redundancy. Challenges are the accuracy of the similarity analysis and scalability.The evaluation shows linear scalability and high accuracy using a data set containing 1200 automatically converted data models from today's most relevant IoT data modeling initiatives: Project Haystack, IoTSchema, and BrickSchema.</abstract><pub>IEEE</pub><doi>10.1109/NOMS54207.2022.9789820</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2374-9709 |
ispartof | NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, 2022, p.1-5 |
issn | 2374-9709 |
language | eng |
recordid | cdi_ieee_primary_9789820 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Analytical models Collaboration convergence crowdsourcing data interoperability IoT modeling open Redundancy Runtime Scalability Semantics |
title | Autonomous convergence mechanisms for collaborative crowd-sourced data-modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autonomous%20convergence%20mechanisms%20for%20collaborative%20crowd-sourced%20data-modeling&rft.btitle=NOMS%202022-2022%20IEEE/IFIP%20Network%20Operations%20and%20Management%20Symposium&rft.au=Lubben,%20Christian&rft.date=2022-04-25&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2374-9709&rft_id=info:doi/10.1109/NOMS54207.2022.9789820&rft.eisbn=9781665406017&rft.eisbn_list=1665406011&rft_dat=%3Cieee_CHZPO%3E9789820%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-362f08969dc9e8665956d3187bfba3ded5857ecbd9fdedbd80f6e945297c039a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9789820&rfr_iscdi=true |