Loading…

Dynamic Probabilistic Pruning: A General Framework for Hardware-Constrained Pruning at Different Granularities

Unstructured neural network pruning algorithms have achieved impressive compression ratios. However, the resulting-typically irregular-sparse matrices hamper efficient hardware implementations, leading to additional memory usage and complex control logic that diminishes the benefits of unstructured...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2024-01, Vol.PP (1), p.1-12
Main Authors: Gonzalez-Carabarin, Lizeth, Huijben, Iris A. M., Veeling, Bastian, Schmid, Alexandre, van Sloun, Ruud J. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unstructured neural network pruning algorithms have achieved impressive compression ratios. However, the resulting-typically irregular-sparse matrices hamper efficient hardware implementations, leading to additional memory usage and complex control logic that diminishes the benefits of unstructured pruning. This has spurred structured coarse-grained pruning solutions that prune entire feature maps or even layers, enabling efficient implementation at the expense of reduced flexibility. Here, we propose a flexible new pruning mechanism that facilitates pruning at different granularities (weights, kernels, and feature maps) while retaining efficient memory organization (e.g., pruning exactly k -out-of- n weights for every output neuron or pruning exactly k -out-of- n kernels for every feature map). We refer to this algorithm as dynamic probabilistic pruning (DPP). DPP leverages the Gumbel-softmax relaxation for differentiable k -out-of- n sampling, facilitating end-to-end optimization. We show that DPP achieves competitive compression ratios and classification accuracy when pruning common deep learning models trained on different benchmark datasets for image classification. Relevantly, the dynamic masking of DPP facilitates for joint optimization of pruning and weight quantization in order to even further compress the network, which we show as well. Finally, we propose novel information-theoretic metrics that show the confidence and pruning diversity of pruning masks within a layer.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2022.3176809