Loading…

First Dedicated Balloon Catheter for Magnetic Particle Imaging

Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a hi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2022-11, Vol.41 (11), p.3301-3308
Main Authors: Ahlborg, Mandy, Friedrich, Thomas, Gottsche, Thorsten, Scheitenberger, Vincent, Linemann, Reinhard, Wattenberg, Maximilian, Buessen, Anne T., Knopp, Tobias, Szwargulski, Patryk, Kaul, Michael G., Salamon, Johannes, Buzug, Thorsten M., Barkhausen, Jorg, Wegner, Franz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c277t-bb84734a8625306358ceac9a40b500f1507c76d18ece9bf7cae13d34622ed9923
cites cdi_FETCH-LOGICAL-c277t-bb84734a8625306358ceac9a40b500f1507c76d18ece9bf7cae13d34622ed9923
container_end_page 3308
container_issue 11
container_start_page 3301
container_title IEEE transactions on medical imaging
container_volume 41
creator Ahlborg, Mandy
Friedrich, Thomas
Gottsche, Thorsten
Scheitenberger, Vincent
Linemann, Reinhard
Wattenberg, Maximilian
Buessen, Anne T.
Knopp, Tobias
Szwargulski, Patryk
Kaul, Michael G.
Salamon, Johannes
Buzug, Thorsten M.
Barkhausen, Jorg
Wegner, Franz
description Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a higher accuracy for diagnosis and treatment of vascular diseases. Different techniques to make devices MPI visible have been introduced so far, such as varnish markings or filling of balloons. However, all approaches include challenges for in vivo applications, such as the stability of the varnishing or the visibility of tracer filled balloons in deflated state. In this contribution, we present for the first time a balloon catheter that is molded from a granulate incorporating nanoparticles and can be visualized sufficiently in MPI. Computed tomography is used to show the homogeneous distribution of particles within the material. Safety measurements confirm that the incorporation of nanoparticles has no negative effect on the balloon. A dynamic experiment is performed to show that the inflation as well as deflation of the balloon can be imaged with MPI.
doi_str_mv 10.1109/TMI.2022.3183948
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9797737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9797737</ieee_id><sourcerecordid>2729636466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-bb84734a8625306358ceac9a40b500f1507c76d18ece9bf7cae13d34622ed9923</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMoOj72giAFN2463iRNbrMRdHwNOOhCwV1I09ux0mk16Sz893aY0YWrs7jfOVw-xo45jDkHc_Eym44FCDGWPJcmy7fYiCuVp0Jlb9tsBALzFECLPbYf4wcAzxSYXbYnFYLh3IzY5V0dYp_cUFl711OZXLum6bo2mbj-nXoKSdWFZObmLfW1T55dGKKhZLpw87qdH7KdyjWRjjZ5wF7vbl8mD-nj0_10cvWYeoHYp0WRZygzl2uhJGipck_OG5dBoQAqrgA96pLn5MkUFXpHXJYy00JQaYyQB-x8vfsZuq8lxd4u6uipaVxL3TJaoREVCoVmQM_-oR_dMrTDd1agMFrqTOuBgjXlQxdjoMp-hnrhwrflYFdu7eDWrtzajduhcroZXhYLKv8KvzIH4GQN1ET0dzZoECXKH06RewY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729636466</pqid></control><display><type>article</type><title>First Dedicated Balloon Catheter for Magnetic Particle Imaging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ahlborg, Mandy ; Friedrich, Thomas ; Gottsche, Thorsten ; Scheitenberger, Vincent ; Linemann, Reinhard ; Wattenberg, Maximilian ; Buessen, Anne T. ; Knopp, Tobias ; Szwargulski, Patryk ; Kaul, Michael G. ; Salamon, Johannes ; Buzug, Thorsten M. ; Barkhausen, Jorg ; Wegner, Franz</creator><creatorcontrib>Ahlborg, Mandy ; Friedrich, Thomas ; Gottsche, Thorsten ; Scheitenberger, Vincent ; Linemann, Reinhard ; Wattenberg, Maximilian ; Buessen, Anne T. ; Knopp, Tobias ; Szwargulski, Patryk ; Kaul, Michael G. ; Salamon, Johannes ; Buzug, Thorsten M. ; Barkhausen, Jorg ; Wegner, Franz</creatorcontrib><description>Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a higher accuracy for diagnosis and treatment of vascular diseases. Different techniques to make devices MPI visible have been introduced so far, such as varnish markings or filling of balloons. However, all approaches include challenges for in vivo applications, such as the stability of the varnishing or the visibility of tracer filled balloons in deflated state. In this contribution, we present for the first time a balloon catheter that is molded from a granulate incorporating nanoparticles and can be visualized sufficiently in MPI. Computed tomography is used to show the homogeneous distribution of particles within the material. Safety measurements confirm that the incorporation of nanoparticles has no negative effect on the balloon. A dynamic experiment is performed to show that the inflation as well as deflation of the balloon can be imaged with MPI.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3183948</identifier><identifier>PMID: 35709119</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Balloon catheters ; Balloon treatment ; Catheters ; Computed tomography ; Granulation ; Heating systems ; Imaging ; Instruments ; interventional instruments ; Ionizing radiation ; Magnetic particle imaging ; Medical diagnosis ; Medical diagnostic imaging ; Medical imaging ; Medical instruments ; Nanoparticles ; Polymers ; Temporal resolution ; Varnishing ; Vascular diseases ; Visualization</subject><ispartof>IEEE transactions on medical imaging, 2022-11, Vol.41 (11), p.3301-3308</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-bb84734a8625306358ceac9a40b500f1507c76d18ece9bf7cae13d34622ed9923</citedby><cites>FETCH-LOGICAL-c277t-bb84734a8625306358ceac9a40b500f1507c76d18ece9bf7cae13d34622ed9923</cites><orcidid>0000-0003-2563-9006 ; 0000-0001-5969-3428 ; 0000-0002-1589-8517 ; 0000-0002-0192-8033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9797737$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35709119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahlborg, Mandy</creatorcontrib><creatorcontrib>Friedrich, Thomas</creatorcontrib><creatorcontrib>Gottsche, Thorsten</creatorcontrib><creatorcontrib>Scheitenberger, Vincent</creatorcontrib><creatorcontrib>Linemann, Reinhard</creatorcontrib><creatorcontrib>Wattenberg, Maximilian</creatorcontrib><creatorcontrib>Buessen, Anne T.</creatorcontrib><creatorcontrib>Knopp, Tobias</creatorcontrib><creatorcontrib>Szwargulski, Patryk</creatorcontrib><creatorcontrib>Kaul, Michael G.</creatorcontrib><creatorcontrib>Salamon, Johannes</creatorcontrib><creatorcontrib>Buzug, Thorsten M.</creatorcontrib><creatorcontrib>Barkhausen, Jorg</creatorcontrib><creatorcontrib>Wegner, Franz</creatorcontrib><title>First Dedicated Balloon Catheter for Magnetic Particle Imaging</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a higher accuracy for diagnosis and treatment of vascular diseases. Different techniques to make devices MPI visible have been introduced so far, such as varnish markings or filling of balloons. However, all approaches include challenges for in vivo applications, such as the stability of the varnishing or the visibility of tracer filled balloons in deflated state. In this contribution, we present for the first time a balloon catheter that is molded from a granulate incorporating nanoparticles and can be visualized sufficiently in MPI. Computed tomography is used to show the homogeneous distribution of particles within the material. Safety measurements confirm that the incorporation of nanoparticles has no negative effect on the balloon. A dynamic experiment is performed to show that the inflation as well as deflation of the balloon can be imaged with MPI.</description><subject>Balloon catheters</subject><subject>Balloon treatment</subject><subject>Catheters</subject><subject>Computed tomography</subject><subject>Granulation</subject><subject>Heating systems</subject><subject>Imaging</subject><subject>Instruments</subject><subject>interventional instruments</subject><subject>Ionizing radiation</subject><subject>Magnetic particle imaging</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>Medical imaging</subject><subject>Medical instruments</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Temporal resolution</subject><subject>Varnishing</subject><subject>Vascular diseases</subject><subject>Visualization</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxDAUhYMoOj72giAFN2463iRNbrMRdHwNOOhCwV1I09ux0mk16Sz893aY0YWrs7jfOVw-xo45jDkHc_Eym44FCDGWPJcmy7fYiCuVp0Jlb9tsBALzFECLPbYf4wcAzxSYXbYnFYLh3IzY5V0dYp_cUFl711OZXLum6bo2mbj-nXoKSdWFZObmLfW1T55dGKKhZLpw87qdH7KdyjWRjjZ5wF7vbl8mD-nj0_10cvWYeoHYp0WRZygzl2uhJGipck_OG5dBoQAqrgA96pLn5MkUFXpHXJYy00JQaYyQB-x8vfsZuq8lxd4u6uipaVxL3TJaoREVCoVmQM_-oR_dMrTDd1agMFrqTOuBgjXlQxdjoMp-hnrhwrflYFdu7eDWrtzajduhcroZXhYLKv8KvzIH4GQN1ET0dzZoECXKH06RewY</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ahlborg, Mandy</creator><creator>Friedrich, Thomas</creator><creator>Gottsche, Thorsten</creator><creator>Scheitenberger, Vincent</creator><creator>Linemann, Reinhard</creator><creator>Wattenberg, Maximilian</creator><creator>Buessen, Anne T.</creator><creator>Knopp, Tobias</creator><creator>Szwargulski, Patryk</creator><creator>Kaul, Michael G.</creator><creator>Salamon, Johannes</creator><creator>Buzug, Thorsten M.</creator><creator>Barkhausen, Jorg</creator><creator>Wegner, Franz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2563-9006</orcidid><orcidid>https://orcid.org/0000-0001-5969-3428</orcidid><orcidid>https://orcid.org/0000-0002-1589-8517</orcidid><orcidid>https://orcid.org/0000-0002-0192-8033</orcidid></search><sort><creationdate>20221101</creationdate><title>First Dedicated Balloon Catheter for Magnetic Particle Imaging</title><author>Ahlborg, Mandy ; Friedrich, Thomas ; Gottsche, Thorsten ; Scheitenberger, Vincent ; Linemann, Reinhard ; Wattenberg, Maximilian ; Buessen, Anne T. ; Knopp, Tobias ; Szwargulski, Patryk ; Kaul, Michael G. ; Salamon, Johannes ; Buzug, Thorsten M. ; Barkhausen, Jorg ; Wegner, Franz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-bb84734a8625306358ceac9a40b500f1507c76d18ece9bf7cae13d34622ed9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Balloon catheters</topic><topic>Balloon treatment</topic><topic>Catheters</topic><topic>Computed tomography</topic><topic>Granulation</topic><topic>Heating systems</topic><topic>Imaging</topic><topic>Instruments</topic><topic>interventional instruments</topic><topic>Ionizing radiation</topic><topic>Magnetic particle imaging</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>Medical imaging</topic><topic>Medical instruments</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Temporal resolution</topic><topic>Varnishing</topic><topic>Vascular diseases</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahlborg, Mandy</creatorcontrib><creatorcontrib>Friedrich, Thomas</creatorcontrib><creatorcontrib>Gottsche, Thorsten</creatorcontrib><creatorcontrib>Scheitenberger, Vincent</creatorcontrib><creatorcontrib>Linemann, Reinhard</creatorcontrib><creatorcontrib>Wattenberg, Maximilian</creatorcontrib><creatorcontrib>Buessen, Anne T.</creatorcontrib><creatorcontrib>Knopp, Tobias</creatorcontrib><creatorcontrib>Szwargulski, Patryk</creatorcontrib><creatorcontrib>Kaul, Michael G.</creatorcontrib><creatorcontrib>Salamon, Johannes</creatorcontrib><creatorcontrib>Buzug, Thorsten M.</creatorcontrib><creatorcontrib>Barkhausen, Jorg</creatorcontrib><creatorcontrib>Wegner, Franz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahlborg, Mandy</au><au>Friedrich, Thomas</au><au>Gottsche, Thorsten</au><au>Scheitenberger, Vincent</au><au>Linemann, Reinhard</au><au>Wattenberg, Maximilian</au><au>Buessen, Anne T.</au><au>Knopp, Tobias</au><au>Szwargulski, Patryk</au><au>Kaul, Michael G.</au><au>Salamon, Johannes</au><au>Buzug, Thorsten M.</au><au>Barkhausen, Jorg</au><au>Wegner, Franz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Dedicated Balloon Catheter for Magnetic Particle Imaging</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>41</volume><issue>11</issue><spage>3301</spage><epage>3308</epage><pages>3301-3308</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a higher accuracy for diagnosis and treatment of vascular diseases. Different techniques to make devices MPI visible have been introduced so far, such as varnish markings or filling of balloons. However, all approaches include challenges for in vivo applications, such as the stability of the varnishing or the visibility of tracer filled balloons in deflated state. In this contribution, we present for the first time a balloon catheter that is molded from a granulate incorporating nanoparticles and can be visualized sufficiently in MPI. Computed tomography is used to show the homogeneous distribution of particles within the material. Safety measurements confirm that the incorporation of nanoparticles has no negative effect on the balloon. A dynamic experiment is performed to show that the inflation as well as deflation of the balloon can be imaged with MPI.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35709119</pmid><doi>10.1109/TMI.2022.3183948</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2563-9006</orcidid><orcidid>https://orcid.org/0000-0001-5969-3428</orcidid><orcidid>https://orcid.org/0000-0002-1589-8517</orcidid><orcidid>https://orcid.org/0000-0002-0192-8033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2022-11, Vol.41 (11), p.3301-3308
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_9797737
source IEEE Electronic Library (IEL) Journals
subjects Balloon catheters
Balloon treatment
Catheters
Computed tomography
Granulation
Heating systems
Imaging
Instruments
interventional instruments
Ionizing radiation
Magnetic particle imaging
Medical diagnosis
Medical diagnostic imaging
Medical imaging
Medical instruments
Nanoparticles
Polymers
Temporal resolution
Varnishing
Vascular diseases
Visualization
title First Dedicated Balloon Catheter for Magnetic Particle Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Dedicated%20Balloon%20Catheter%20for%20Magnetic%20Particle%20Imaging&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ahlborg,%20Mandy&rft.date=2022-11-01&rft.volume=41&rft.issue=11&rft.spage=3301&rft.epage=3308&rft.pages=3301-3308&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3183948&rft_dat=%3Cproquest_ieee_%3E2729636466%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-bb84734a8625306358ceac9a40b500f1507c76d18ece9bf7cae13d34622ed9923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729636466&rft_id=info:pmid/35709119&rft_ieee_id=9797737&rfr_iscdi=true