Loading…

High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator

Neural networks have shown a high ability to model and solve complex problems. Hardware implementation of the neural network can also increase the efficiency of this system and, in particular neural network hardware accelerators. This paper proposes a high-performance and low-power spintronic binari...

Full description

Saved in:
Bibliographic Details
Main Authors: Nasab, Milad Tanavardi, Amirany, Arefe, Moaiyeri, Mohammad Hossein, Jafari, Kian
Format: Conference Proceeding
Language:eng ; jpn
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 778
container_issue
container_start_page 774
container_title
container_volume
creator Nasab, Milad Tanavardi
Amirany, Arefe
Moaiyeri, Mohammad Hossein
Jafari, Kian
description Neural networks have shown a high ability to model and solve complex problems. Hardware implementation of the neural network can also increase the efficiency of this system and, in particular neural network hardware accelerators. This paper proposes a high-performance and low-power spintronic binarized neural network hardware accelerator using the nonvolatile feature of the magnetic tunnel junction (MTJ) and low leakage current of carbon nanotube field-effect transistors (CNTFET). It is also noteworthy that the proposed design in this paper can implement the hard-limit activation function. Simulation results indicate the neural network implemented using the proposed design in this paper consumes 11% to 98% lower power, occupies 64% to 69% lower area, and offers 29% to 99% lower power delay area product (PDAP) than the state-of-the-art counterparts.
doi_str_mv 10.1109/ICEE55646.2022.9827189
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9827189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9827189</ieee_id><sourcerecordid>9827189</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1149-7b10f0ec1b5edce6456f7de863c19e283418a38479eede32af83189e791bb3363</originalsourceid><addsrcrecordid>eNotkMtKw0AUQEdBsNR-gSDzA6lz5z3LGqotFC2ouCyTyY2Opkm5rQT9egt2dXaHw2HsBsQUQITbZTmfG2O1nUoh5TR46cCHMzYJzoO1RnvhHZyzkbRaFsFId8km-_2nEEKB9z6YEXtb5PcPvkZqetrGLiGPXc1X_cDX_YDEn3e5O1Df5cTvchcp_2LNH_GbYnvEYejpiy8i1UMk5LOUsEWKh56u2EUT2z1OThyz1_v5S7koVk8Py3K2KjKADoWrQDQCE1QG64RWG9u4Gr1VCQJKrzT4qLx2AbFGJWPjj-kBXYCqUsqqMbv-92ZE3OwobyP9bE4r1B_SBlNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator</title><source>IEEE Xplore All Conference Series</source><creator>Nasab, Milad Tanavardi ; Amirany, Arefe ; Moaiyeri, Mohammad Hossein ; Jafari, Kian</creator><creatorcontrib>Nasab, Milad Tanavardi ; Amirany, Arefe ; Moaiyeri, Mohammad Hossein ; Jafari, Kian</creatorcontrib><description>Neural networks have shown a high ability to model and solve complex problems. Hardware implementation of the neural network can also increase the efficiency of this system and, in particular neural network hardware accelerators. This paper proposes a high-performance and low-power spintronic binarized neural network hardware accelerator using the nonvolatile feature of the magnetic tunnel junction (MTJ) and low leakage current of carbon nanotube field-effect transistors (CNTFET). It is also noteworthy that the proposed design in this paper can implement the hard-limit activation function. Simulation results indicate the neural network implemented using the proposed design in this paper consumes 11% to 98% lower power, occupies 64% to 69% lower area, and offers 29% to 99% lower power delay area product (PDAP) than the state-of-the-art counterparts.</description><identifier>EISSN: 2642-9527</identifier><identifier>EISBN: 9781665480871</identifier><identifier>EISBN: 1665480874</identifier><identifier>DOI: 10.1109/ICEE55646.2022.9827189</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Binarized neural network hardware accelerator ; CNTFET ; Hardware ; Low power design ; Memory management ; MTJ ; Neural network hardware ; Nonvolatile memory ; Power demand ; Simulation ; System performance ; XNOR-Net</subject><ispartof>2022 30th International Conference on Electrical Engineering (ICEE), 2022, p.774-778</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9827189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9827189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nasab, Milad Tanavardi</creatorcontrib><creatorcontrib>Amirany, Arefe</creatorcontrib><creatorcontrib>Moaiyeri, Mohammad Hossein</creatorcontrib><creatorcontrib>Jafari, Kian</creatorcontrib><title>High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator</title><title>2022 30th International Conference on Electrical Engineering (ICEE)</title><addtitle>ICEE</addtitle><description>Neural networks have shown a high ability to model and solve complex problems. Hardware implementation of the neural network can also increase the efficiency of this system and, in particular neural network hardware accelerators. This paper proposes a high-performance and low-power spintronic binarized neural network hardware accelerator using the nonvolatile feature of the magnetic tunnel junction (MTJ) and low leakage current of carbon nanotube field-effect transistors (CNTFET). It is also noteworthy that the proposed design in this paper can implement the hard-limit activation function. Simulation results indicate the neural network implemented using the proposed design in this paper consumes 11% to 98% lower power, occupies 64% to 69% lower area, and offers 29% to 99% lower power delay area product (PDAP) than the state-of-the-art counterparts.</description><subject>Binarized neural network hardware accelerator</subject><subject>CNTFET</subject><subject>Hardware</subject><subject>Low power design</subject><subject>Memory management</subject><subject>MTJ</subject><subject>Neural network hardware</subject><subject>Nonvolatile memory</subject><subject>Power demand</subject><subject>Simulation</subject><subject>System performance</subject><subject>XNOR-Net</subject><issn>2642-9527</issn><isbn>9781665480871</isbn><isbn>1665480874</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKw0AUQEdBsNR-gSDzA6lz5z3LGqotFC2ouCyTyY2Opkm5rQT9egt2dXaHw2HsBsQUQITbZTmfG2O1nUoh5TR46cCHMzYJzoO1RnvhHZyzkbRaFsFId8km-_2nEEKB9z6YEXtb5PcPvkZqetrGLiGPXc1X_cDX_YDEn3e5O1Df5cTvchcp_2LNH_GbYnvEYejpiy8i1UMk5LOUsEWKh56u2EUT2z1OThyz1_v5S7koVk8Py3K2KjKADoWrQDQCE1QG64RWG9u4Gr1VCQJKrzT4qLx2AbFGJWPjj-kBXYCqUsqqMbv-92ZE3OwobyP9bE4r1B_SBlNw</recordid><startdate>20220517</startdate><enddate>20220517</enddate><creator>Nasab, Milad Tanavardi</creator><creator>Amirany, Arefe</creator><creator>Moaiyeri, Mohammad Hossein</creator><creator>Jafari, Kian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220517</creationdate><title>High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator</title><author>Nasab, Milad Tanavardi ; Amirany, Arefe ; Moaiyeri, Mohammad Hossein ; Jafari, Kian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1149-7b10f0ec1b5edce6456f7de863c19e283418a38479eede32af83189e791bb3363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2022</creationdate><topic>Binarized neural network hardware accelerator</topic><topic>CNTFET</topic><topic>Hardware</topic><topic>Low power design</topic><topic>Memory management</topic><topic>MTJ</topic><topic>Neural network hardware</topic><topic>Nonvolatile memory</topic><topic>Power demand</topic><topic>Simulation</topic><topic>System performance</topic><topic>XNOR-Net</topic><toplevel>online_resources</toplevel><creatorcontrib>Nasab, Milad Tanavardi</creatorcontrib><creatorcontrib>Amirany, Arefe</creatorcontrib><creatorcontrib>Moaiyeri, Mohammad Hossein</creatorcontrib><creatorcontrib>Jafari, Kian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nasab, Milad Tanavardi</au><au>Amirany, Arefe</au><au>Moaiyeri, Mohammad Hossein</au><au>Jafari, Kian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator</atitle><btitle>2022 30th International Conference on Electrical Engineering (ICEE)</btitle><stitle>ICEE</stitle><date>2022-05-17</date><risdate>2022</risdate><spage>774</spage><epage>778</epage><pages>774-778</pages><eissn>2642-9527</eissn><eisbn>9781665480871</eisbn><eisbn>1665480874</eisbn><abstract>Neural networks have shown a high ability to model and solve complex problems. Hardware implementation of the neural network can also increase the efficiency of this system and, in particular neural network hardware accelerators. This paper proposes a high-performance and low-power spintronic binarized neural network hardware accelerator using the nonvolatile feature of the magnetic tunnel junction (MTJ) and low leakage current of carbon nanotube field-effect transistors (CNTFET). It is also noteworthy that the proposed design in this paper can implement the hard-limit activation function. Simulation results indicate the neural network implemented using the proposed design in this paper consumes 11% to 98% lower power, occupies 64% to 69% lower area, and offers 29% to 99% lower power delay area product (PDAP) than the state-of-the-art counterparts.</abstract><pub>IEEE</pub><doi>10.1109/ICEE55646.2022.9827189</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-9527
ispartof 2022 30th International Conference on Electrical Engineering (ICEE), 2022, p.774-778
issn 2642-9527
language eng ; jpn
recordid cdi_ieee_primary_9827189
source IEEE Xplore All Conference Series
subjects Binarized neural network hardware accelerator
CNTFET
Hardware
Low power design
Memory management
MTJ
Neural network hardware
Nonvolatile memory
Power demand
Simulation
System performance
XNOR-Net
title High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20Performance%20and%20Low%20Power%20Spintronic%20Binarized%20Neural%20Network%20Hardware%20Accelerator&rft.btitle=2022%2030th%20International%20Conference%20on%20Electrical%20Engineering%20(ICEE)&rft.au=Nasab,%20Milad%20Tanavardi&rft.date=2022-05-17&rft.spage=774&rft.epage=778&rft.pages=774-778&rft.eissn=2642-9527&rft_id=info:doi/10.1109/ICEE55646.2022.9827189&rft.eisbn=9781665480871&rft.eisbn_list=1665480874&rft_dat=%3Cieee_CHZPO%3E9827189%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1149-7b10f0ec1b5edce6456f7de863c19e283418a38479eede32af83189e791bb3363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9827189&rfr_iscdi=true