Loading…

Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM

In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possib...

Full description

Saved in:
Bibliographic Details
Main Authors: Krishna Yoga Utama, Ida Bagus, Tran, Duc Hoang, Jang, Yeong Min
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 465
container_issue
container_start_page 462
container_title
container_volume
creator Krishna Yoga Utama, Ida Bagus
Tran, Duc Hoang
Jang, Yeong Min
description In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possible to use other features to predict the PM2.5 concentrations. In this paper, we present a modified attention Seq2Seq BiLSTM model for predicting the PM2.5 concentration. Based on the proposed model, short term (60 minute ahead, 90 minute ahead, and 120 minute ahead) PM2.5 concentration predictions was built. The proposed model also compared with Seq2Seq LSTM, Seq2Seq BiLSTM, and attention Seq2Seq LSTM models where the proposed model outperformed those models by achieving lowest RMSE, MAE, and MAPE values in all prediction time length.
doi_str_mv 10.1109/ICUFN55119.2022.9829659
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9829659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9829659</ieee_id><sourcerecordid>9829659</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-e544eb1995124b48a8c006d4cff6498cc9581050163b4bc039a6a65c0b16bd023</originalsourceid><addsrcrecordid>eNotj9FKwzAUhqMgOGafwAvzAq3nJDkxuZzFuUGrg27Xo0lTjbhV23jh2yu6i5_v4oMPfsZuEApEsLfrcrd8IkK0hQAhCmuE1WTPWGbvDGpNyhABnLOZQE25IakvWTZNbwAgBaIBOWNl8zqMKU9hPPBNLQrimzF00ac4HPnXFI8vvB662MfQ8UVK4fgnmvApfsfvY9Vs6yt20bfvU8hOnLPd8mFbrvLq-XFdLqo8CpApD6RUcGgtoVBOmdZ4AN0p3_daWeO9JYNAgFo65TxI2-pWkweH2nUg5Jxd_3djCGH_McZDO37vT7flD9HDSl4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM</title><source>IEEE Xplore All Conference Series</source><creator>Krishna Yoga Utama, Ida Bagus ; Tran, Duc Hoang ; Jang, Yeong Min</creator><creatorcontrib>Krishna Yoga Utama, Ida Bagus ; Tran, Duc Hoang ; Jang, Yeong Min</creatorcontrib><description>In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possible to use other features to predict the PM2.5 concentrations. In this paper, we present a modified attention Seq2Seq BiLSTM model for predicting the PM2.5 concentration. Based on the proposed model, short term (60 minute ahead, 90 minute ahead, and 120 minute ahead) PM2.5 concentration predictions was built. The proposed model also compared with Seq2Seq LSTM, Seq2Seq BiLSTM, and attention Seq2Seq LSTM models where the proposed model outperformed those models by achieving lowest RMSE, MAE, and MAPE values in all prediction time length.</description><identifier>EISSN: 2165-8536</identifier><identifier>EISBN: 9781665485500</identifier><identifier>EISBN: 1665485507</identifier><identifier>DOI: 10.1109/ICUFN55119.2022.9829659</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attention Seq2Seq BiLSTM ; Decoding ; Electronics industry ; Humidity ; IoT platform ; Manufacturing processes ; particulate matter ; PM2.5 ; prediction ; Predictive models ; Semiconductor device modeling</subject><ispartof>2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2022, p.462-465</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9829659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9829659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishna Yoga Utama, Ida Bagus</creatorcontrib><creatorcontrib>Tran, Duc Hoang</creatorcontrib><creatorcontrib>Jang, Yeong Min</creatorcontrib><title>Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM</title><title>2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN)</title><addtitle>ICUFN</addtitle><description>In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possible to use other features to predict the PM2.5 concentrations. In this paper, we present a modified attention Seq2Seq BiLSTM model for predicting the PM2.5 concentration. Based on the proposed model, short term (60 minute ahead, 90 minute ahead, and 120 minute ahead) PM2.5 concentration predictions was built. The proposed model also compared with Seq2Seq LSTM, Seq2Seq BiLSTM, and attention Seq2Seq LSTM models where the proposed model outperformed those models by achieving lowest RMSE, MAE, and MAPE values in all prediction time length.</description><subject>Attention Seq2Seq BiLSTM</subject><subject>Decoding</subject><subject>Electronics industry</subject><subject>Humidity</subject><subject>IoT platform</subject><subject>Manufacturing processes</subject><subject>particulate matter</subject><subject>PM2.5</subject><subject>prediction</subject><subject>Predictive models</subject><subject>Semiconductor device modeling</subject><issn>2165-8536</issn><isbn>9781665485500</isbn><isbn>1665485507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhqMgOGafwAvzAq3nJDkxuZzFuUGrg27Xo0lTjbhV23jh2yu6i5_v4oMPfsZuEApEsLfrcrd8IkK0hQAhCmuE1WTPWGbvDGpNyhABnLOZQE25IakvWTZNbwAgBaIBOWNl8zqMKU9hPPBNLQrimzF00ac4HPnXFI8vvB662MfQ8UVK4fgnmvApfsfvY9Vs6yt20bfvU8hOnLPd8mFbrvLq-XFdLqo8CpApD6RUcGgtoVBOmdZ4AN0p3_daWeO9JYNAgFo65TxI2-pWkweH2nUg5Jxd_3djCGH_McZDO37vT7flD9HDSl4</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Krishna Yoga Utama, Ida Bagus</creator><creator>Tran, Duc Hoang</creator><creator>Jang, Yeong Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220705</creationdate><title>Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM</title><author>Krishna Yoga Utama, Ida Bagus ; Tran, Duc Hoang ; Jang, Yeong Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-e544eb1995124b48a8c006d4cff6498cc9581050163b4bc039a6a65c0b16bd023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention Seq2Seq BiLSTM</topic><topic>Decoding</topic><topic>Electronics industry</topic><topic>Humidity</topic><topic>IoT platform</topic><topic>Manufacturing processes</topic><topic>particulate matter</topic><topic>PM2.5</topic><topic>prediction</topic><topic>Predictive models</topic><topic>Semiconductor device modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishna Yoga Utama, Ida Bagus</creatorcontrib><creatorcontrib>Tran, Duc Hoang</creatorcontrib><creatorcontrib>Jang, Yeong Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishna Yoga Utama, Ida Bagus</au><au>Tran, Duc Hoang</au><au>Jang, Yeong Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM</atitle><btitle>2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN)</btitle><stitle>ICUFN</stitle><date>2022-07-05</date><risdate>2022</risdate><spage>462</spage><epage>465</epage><pages>462-465</pages><eissn>2165-8536</eissn><eisbn>9781665485500</eisbn><eisbn>1665485507</eisbn><abstract>In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possible to use other features to predict the PM2.5 concentrations. In this paper, we present a modified attention Seq2Seq BiLSTM model for predicting the PM2.5 concentration. Based on the proposed model, short term (60 minute ahead, 90 minute ahead, and 120 minute ahead) PM2.5 concentration predictions was built. The proposed model also compared with Seq2Seq LSTM, Seq2Seq BiLSTM, and attention Seq2Seq LSTM models where the proposed model outperformed those models by achieving lowest RMSE, MAE, and MAPE values in all prediction time length.</abstract><pub>IEEE</pub><doi>10.1109/ICUFN55119.2022.9829659</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2165-8536
ispartof 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2022, p.462-465
issn 2165-8536
language eng
recordid cdi_ieee_primary_9829659
source IEEE Xplore All Conference Series
subjects Attention Seq2Seq BiLSTM
Decoding
Electronics industry
Humidity
IoT platform
Manufacturing processes
particulate matter
PM2.5
prediction
Predictive models
Semiconductor device modeling
title Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Short-term%20PM2.5%20Prediction%20using%20Modified%20Attention%20Seq2Seq%20BiLSTM&rft.btitle=2022%20Thirteenth%20International%20Conference%20on%20Ubiquitous%20and%20Future%20Networks%20(ICUFN)&rft.au=Krishna%20Yoga%20Utama,%20Ida%20Bagus&rft.date=2022-07-05&rft.spage=462&rft.epage=465&rft.pages=462-465&rft.eissn=2165-8536&rft_id=info:doi/10.1109/ICUFN55119.2022.9829659&rft.eisbn=9781665485500&rft.eisbn_list=1665485507&rft_dat=%3Cieee_CHZPO%3E9829659%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-e544eb1995124b48a8c006d4cff6498cc9581050163b4bc039a6a65c0b16bd023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9829659&rfr_iscdi=true