Loading…
Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM
In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possib...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 465 |
container_issue | |
container_start_page | 462 |
container_title | |
container_volume | |
creator | Krishna Yoga Utama, Ida Bagus Tran, Duc Hoang Jang, Yeong Min |
description | In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possible to use other features to predict the PM2.5 concentrations. In this paper, we present a modified attention Seq2Seq BiLSTM model for predicting the PM2.5 concentration. Based on the proposed model, short term (60 minute ahead, 90 minute ahead, and 120 minute ahead) PM2.5 concentration predictions was built. The proposed model also compared with Seq2Seq LSTM, Seq2Seq BiLSTM, and attention Seq2Seq LSTM models where the proposed model outperformed those models by achieving lowest RMSE, MAE, and MAPE values in all prediction time length. |
doi_str_mv | 10.1109/ICUFN55119.2022.9829659 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9829659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9829659</ieee_id><sourcerecordid>9829659</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-e544eb1995124b48a8c006d4cff6498cc9581050163b4bc039a6a65c0b16bd023</originalsourceid><addsrcrecordid>eNotj9FKwzAUhqMgOGafwAvzAq3nJDkxuZzFuUGrg27Xo0lTjbhV23jh2yu6i5_v4oMPfsZuEApEsLfrcrd8IkK0hQAhCmuE1WTPWGbvDGpNyhABnLOZQE25IakvWTZNbwAgBaIBOWNl8zqMKU9hPPBNLQrimzF00ac4HPnXFI8vvB662MfQ8UVK4fgnmvApfsfvY9Vs6yt20bfvU8hOnLPd8mFbrvLq-XFdLqo8CpApD6RUcGgtoVBOmdZ4AN0p3_daWeO9JYNAgFo65TxI2-pWkweH2nUg5Jxd_3djCGH_McZDO37vT7flD9HDSl4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM</title><source>IEEE Xplore All Conference Series</source><creator>Krishna Yoga Utama, Ida Bagus ; Tran, Duc Hoang ; Jang, Yeong Min</creator><creatorcontrib>Krishna Yoga Utama, Ida Bagus ; Tran, Duc Hoang ; Jang, Yeong Min</creatorcontrib><description>In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possible to use other features to predict the PM2.5 concentrations. In this paper, we present a modified attention Seq2Seq BiLSTM model for predicting the PM2.5 concentration. Based on the proposed model, short term (60 minute ahead, 90 minute ahead, and 120 minute ahead) PM2.5 concentration predictions was built. The proposed model also compared with Seq2Seq LSTM, Seq2Seq BiLSTM, and attention Seq2Seq LSTM models where the proposed model outperformed those models by achieving lowest RMSE, MAE, and MAPE values in all prediction time length.</description><identifier>EISSN: 2165-8536</identifier><identifier>EISBN: 9781665485500</identifier><identifier>EISBN: 1665485507</identifier><identifier>DOI: 10.1109/ICUFN55119.2022.9829659</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attention Seq2Seq BiLSTM ; Decoding ; Electronics industry ; Humidity ; IoT platform ; Manufacturing processes ; particulate matter ; PM2.5 ; prediction ; Predictive models ; Semiconductor device modeling</subject><ispartof>2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2022, p.462-465</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9829659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9829659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishna Yoga Utama, Ida Bagus</creatorcontrib><creatorcontrib>Tran, Duc Hoang</creatorcontrib><creatorcontrib>Jang, Yeong Min</creatorcontrib><title>Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM</title><title>2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN)</title><addtitle>ICUFN</addtitle><description>In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possible to use other features to predict the PM2.5 concentrations. In this paper, we present a modified attention Seq2Seq BiLSTM model for predicting the PM2.5 concentration. Based on the proposed model, short term (60 minute ahead, 90 minute ahead, and 120 minute ahead) PM2.5 concentration predictions was built. The proposed model also compared with Seq2Seq LSTM, Seq2Seq BiLSTM, and attention Seq2Seq LSTM models where the proposed model outperformed those models by achieving lowest RMSE, MAE, and MAPE values in all prediction time length.</description><subject>Attention Seq2Seq BiLSTM</subject><subject>Decoding</subject><subject>Electronics industry</subject><subject>Humidity</subject><subject>IoT platform</subject><subject>Manufacturing processes</subject><subject>particulate matter</subject><subject>PM2.5</subject><subject>prediction</subject><subject>Predictive models</subject><subject>Semiconductor device modeling</subject><issn>2165-8536</issn><isbn>9781665485500</isbn><isbn>1665485507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhqMgOGafwAvzAq3nJDkxuZzFuUGrg27Xo0lTjbhV23jh2yu6i5_v4oMPfsZuEApEsLfrcrd8IkK0hQAhCmuE1WTPWGbvDGpNyhABnLOZQE25IakvWTZNbwAgBaIBOWNl8zqMKU9hPPBNLQrimzF00ac4HPnXFI8vvB662MfQ8UVK4fgnmvApfsfvY9Vs6yt20bfvU8hOnLPd8mFbrvLq-XFdLqo8CpApD6RUcGgtoVBOmdZ4AN0p3_daWeO9JYNAgFo65TxI2-pWkweH2nUg5Jxd_3djCGH_McZDO37vT7flD9HDSl4</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Krishna Yoga Utama, Ida Bagus</creator><creator>Tran, Duc Hoang</creator><creator>Jang, Yeong Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220705</creationdate><title>Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM</title><author>Krishna Yoga Utama, Ida Bagus ; Tran, Duc Hoang ; Jang, Yeong Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-e544eb1995124b48a8c006d4cff6498cc9581050163b4bc039a6a65c0b16bd023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention Seq2Seq BiLSTM</topic><topic>Decoding</topic><topic>Electronics industry</topic><topic>Humidity</topic><topic>IoT platform</topic><topic>Manufacturing processes</topic><topic>particulate matter</topic><topic>PM2.5</topic><topic>prediction</topic><topic>Predictive models</topic><topic>Semiconductor device modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishna Yoga Utama, Ida Bagus</creatorcontrib><creatorcontrib>Tran, Duc Hoang</creatorcontrib><creatorcontrib>Jang, Yeong Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishna Yoga Utama, Ida Bagus</au><au>Tran, Duc Hoang</au><au>Jang, Yeong Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM</atitle><btitle>2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN)</btitle><stitle>ICUFN</stitle><date>2022-07-05</date><risdate>2022</risdate><spage>462</spage><epage>465</epage><pages>462-465</pages><eissn>2165-8536</eissn><eisbn>9781665485500</eisbn><eisbn>1665485507</eisbn><abstract>In semiconductor industry, concentration of particulate matter in cleanroom is important to maintain as it can damage the wafer die in the manufacturing process. The environment in semiconductor industry is well maintained where the temperature and humidity are always stable. Hence, it is not possible to use other features to predict the PM2.5 concentrations. In this paper, we present a modified attention Seq2Seq BiLSTM model for predicting the PM2.5 concentration. Based on the proposed model, short term (60 minute ahead, 90 minute ahead, and 120 minute ahead) PM2.5 concentration predictions was built. The proposed model also compared with Seq2Seq LSTM, Seq2Seq BiLSTM, and attention Seq2Seq LSTM models where the proposed model outperformed those models by achieving lowest RMSE, MAE, and MAPE values in all prediction time length.</abstract><pub>IEEE</pub><doi>10.1109/ICUFN55119.2022.9829659</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2165-8536 |
ispartof | 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2022, p.462-465 |
issn | 2165-8536 |
language | eng |
recordid | cdi_ieee_primary_9829659 |
source | IEEE Xplore All Conference Series |
subjects | Attention Seq2Seq BiLSTM Decoding Electronics industry Humidity IoT platform Manufacturing processes particulate matter PM2.5 prediction Predictive models Semiconductor device modeling |
title | Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Short-term%20PM2.5%20Prediction%20using%20Modified%20Attention%20Seq2Seq%20BiLSTM&rft.btitle=2022%20Thirteenth%20International%20Conference%20on%20Ubiquitous%20and%20Future%20Networks%20(ICUFN)&rft.au=Krishna%20Yoga%20Utama,%20Ida%20Bagus&rft.date=2022-07-05&rft.spage=462&rft.epage=465&rft.pages=462-465&rft.eissn=2165-8536&rft_id=info:doi/10.1109/ICUFN55119.2022.9829659&rft.eisbn=9781665485500&rft.eisbn_list=1665485507&rft_dat=%3Cieee_CHZPO%3E9829659%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-e544eb1995124b48a8c006d4cff6498cc9581050163b4bc039a6a65c0b16bd023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9829659&rfr_iscdi=true |