Loading…
Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes
We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data prepro...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 320 |
container_issue | |
container_start_page | 303 |
container_title | |
container_volume | |
creator | Jin, Haojian Liu, Gram Hwang, David Kumar, Swarun Agarwal, Yuvraj Hong, Jason I. |
description | We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features. |
doi_str_mv | 10.1109/SP46214.2022.9833629 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9833629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9833629</ieee_id><sourcerecordid>9833629</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-de6d2ca958f1d48fb91ba86b5b701fce9695b1e3b803af79ee9e526a66421a6f3</originalsourceid><addsrcrecordid>eNotkMFKw0AURUdBsNZ-gS7mBxLnzSSTGXexViMUDLSuXJQ3yYuNtkmYiZT-vQW7unAWh8Nl7B5EDCDsw6pMtIQklkLK2BqltLQXbGYzA1qnCSjQ9pJNpMrSCKTIrtlNCN9CSKFsMmGfJdEPur5_5Dkvfl30hIFqng-D77Ha8rHniw7djvjaYxcG9NRVR952_BlH5KXvKwqh7b74oR23J7zaox950e8p3LKrBneBZuedso-XxXpeRMv317d5voxaADNGNelaVmhT00CdmMZZcGi0S10moKnIaps6IOWMUNhklshSKjVqnUhA3agpu_v3tkS0GXx7Sjhuzl-oP1ViU1w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes</title><source>IEEE Xplore All Conference Series</source><creator>Jin, Haojian ; Liu, Gram ; Hwang, David ; Kumar, Swarun ; Agarwal, Yuvraj ; Hong, Jason I.</creator><creatorcontrib>Jin, Haojian ; Liu, Gram ; Hwang, David ; Kumar, Swarun ; Agarwal, Yuvraj ; Hong, Jason I.</creatorcontrib><description>We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features.</description><identifier>EISSN: 2375-1207</identifier><identifier>EISBN: 9781665413169</identifier><identifier>EISBN: 1665413166</identifier><identifier>DOI: 10.1109/SP46214.2022.9833629</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Behavioral sciences ; Data collection ; Data privacy ; Data-minimization ; Pipelines ; Privacy ; Smart homes ; Smart-Home ; System performance ; Technological innovation ; Transparency</subject><ispartof>2022 IEEE Symposium on Security and Privacy (SP), 2022, p.303-320</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9833629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9833629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Haojian</creatorcontrib><creatorcontrib>Liu, Gram</creatorcontrib><creatorcontrib>Hwang, David</creatorcontrib><creatorcontrib>Kumar, Swarun</creatorcontrib><creatorcontrib>Agarwal, Yuvraj</creatorcontrib><creatorcontrib>Hong, Jason I.</creatorcontrib><title>Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes</title><title>2022 IEEE Symposium on Security and Privacy (SP)</title><addtitle>SP</addtitle><description>We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features.</description><subject>Behavioral sciences</subject><subject>Data collection</subject><subject>Data privacy</subject><subject>Data-minimization</subject><subject>Pipelines</subject><subject>Privacy</subject><subject>Smart homes</subject><subject>Smart-Home</subject><subject>System performance</subject><subject>Technological innovation</subject><subject>Transparency</subject><issn>2375-1207</issn><isbn>9781665413169</isbn><isbn>1665413166</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFKw0AURUdBsNZ-gS7mBxLnzSSTGXexViMUDLSuXJQ3yYuNtkmYiZT-vQW7unAWh8Nl7B5EDCDsw6pMtIQklkLK2BqltLQXbGYzA1qnCSjQ9pJNpMrSCKTIrtlNCN9CSKFsMmGfJdEPur5_5Dkvfl30hIFqng-D77Ha8rHniw7djvjaYxcG9NRVR952_BlH5KXvKwqh7b74oR23J7zaox950e8p3LKrBneBZuedso-XxXpeRMv317d5voxaADNGNelaVmhT00CdmMZZcGi0S10moKnIaps6IOWMUNhklshSKjVqnUhA3agpu_v3tkS0GXx7Sjhuzl-oP1ViU1w</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Jin, Haojian</creator><creator>Liu, Gram</creator><creator>Hwang, David</creator><creator>Kumar, Swarun</creator><creator>Agarwal, Yuvraj</creator><creator>Hong, Jason I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202205</creationdate><title>Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes</title><author>Jin, Haojian ; Liu, Gram ; Hwang, David ; Kumar, Swarun ; Agarwal, Yuvraj ; Hong, Jason I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-de6d2ca958f1d48fb91ba86b5b701fce9695b1e3b803af79ee9e526a66421a6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral sciences</topic><topic>Data collection</topic><topic>Data privacy</topic><topic>Data-minimization</topic><topic>Pipelines</topic><topic>Privacy</topic><topic>Smart homes</topic><topic>Smart-Home</topic><topic>System performance</topic><topic>Technological innovation</topic><topic>Transparency</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Haojian</creatorcontrib><creatorcontrib>Liu, Gram</creatorcontrib><creatorcontrib>Hwang, David</creatorcontrib><creatorcontrib>Kumar, Swarun</creatorcontrib><creatorcontrib>Agarwal, Yuvraj</creatorcontrib><creatorcontrib>Hong, Jason I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Haojian</au><au>Liu, Gram</au><au>Hwang, David</au><au>Kumar, Swarun</au><au>Agarwal, Yuvraj</au><au>Hong, Jason I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes</atitle><btitle>2022 IEEE Symposium on Security and Privacy (SP)</btitle><stitle>SP</stitle><date>2022-05</date><risdate>2022</risdate><spage>303</spage><epage>320</epage><pages>303-320</pages><eissn>2375-1207</eissn><eisbn>9781665413169</eisbn><eisbn>1665413166</eisbn><coden>IEEPAD</coden><abstract>We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features.</abstract><pub>IEEE</pub><doi>10.1109/SP46214.2022.9833629</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-1207 |
ispartof | 2022 IEEE Symposium on Security and Privacy (SP), 2022, p.303-320 |
issn | 2375-1207 |
language | eng |
recordid | cdi_ieee_primary_9833629 |
source | IEEE Xplore All Conference Series |
subjects | Behavioral sciences Data collection Data privacy Data-minimization Pipelines Privacy Smart homes Smart-Home System performance Technological innovation Transparency |
title | Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Peekaboo:%20A%20Hub-Based%20Approach%20to%20Enable%20Transparency%20in%20Data%20Processing%20within%20Smart%20Homes&rft.btitle=2022%20IEEE%20Symposium%20on%20Security%20and%20Privacy%20(SP)&rft.au=Jin,%20Haojian&rft.date=2022-05&rft.spage=303&rft.epage=320&rft.pages=303-320&rft.eissn=2375-1207&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SP46214.2022.9833629&rft.eisbn=9781665413169&rft.eisbn_list=1665413166&rft_dat=%3Cieee_CHZPO%3E9833629%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-de6d2ca958f1d48fb91ba86b5b701fce9695b1e3b803af79ee9e526a66421a6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9833629&rfr_iscdi=true |