Loading…

Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes

We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data prepro...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin, Haojian, Liu, Gram, Hwang, David, Kumar, Swarun, Agarwal, Yuvraj, Hong, Jason I.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 320
container_issue
container_start_page 303
container_title
container_volume
creator Jin, Haojian
Liu, Gram
Hwang, David
Kumar, Swarun
Agarwal, Yuvraj
Hong, Jason I.
description We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features.
doi_str_mv 10.1109/SP46214.2022.9833629
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9833629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9833629</ieee_id><sourcerecordid>9833629</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-de6d2ca958f1d48fb91ba86b5b701fce9695b1e3b803af79ee9e526a66421a6f3</originalsourceid><addsrcrecordid>eNotkMFKw0AURUdBsNZ-gS7mBxLnzSSTGXexViMUDLSuXJQ3yYuNtkmYiZT-vQW7unAWh8Nl7B5EDCDsw6pMtIQklkLK2BqltLQXbGYzA1qnCSjQ9pJNpMrSCKTIrtlNCN9CSKFsMmGfJdEPur5_5Dkvfl30hIFqng-D77Ha8rHniw7djvjaYxcG9NRVR952_BlH5KXvKwqh7b74oR23J7zaox950e8p3LKrBneBZuedso-XxXpeRMv317d5voxaADNGNelaVmhT00CdmMZZcGi0S10moKnIaps6IOWMUNhklshSKjVqnUhA3agpu_v3tkS0GXx7Sjhuzl-oP1ViU1w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes</title><source>IEEE Xplore All Conference Series</source><creator>Jin, Haojian ; Liu, Gram ; Hwang, David ; Kumar, Swarun ; Agarwal, Yuvraj ; Hong, Jason I.</creator><creatorcontrib>Jin, Haojian ; Liu, Gram ; Hwang, David ; Kumar, Swarun ; Agarwal, Yuvraj ; Hong, Jason I.</creatorcontrib><description>We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features.</description><identifier>EISSN: 2375-1207</identifier><identifier>EISBN: 9781665413169</identifier><identifier>EISBN: 1665413166</identifier><identifier>DOI: 10.1109/SP46214.2022.9833629</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Behavioral sciences ; Data collection ; Data privacy ; Data-minimization ; Pipelines ; Privacy ; Smart homes ; Smart-Home ; System performance ; Technological innovation ; Transparency</subject><ispartof>2022 IEEE Symposium on Security and Privacy (SP), 2022, p.303-320</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9833629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9833629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Haojian</creatorcontrib><creatorcontrib>Liu, Gram</creatorcontrib><creatorcontrib>Hwang, David</creatorcontrib><creatorcontrib>Kumar, Swarun</creatorcontrib><creatorcontrib>Agarwal, Yuvraj</creatorcontrib><creatorcontrib>Hong, Jason I.</creatorcontrib><title>Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes</title><title>2022 IEEE Symposium on Security and Privacy (SP)</title><addtitle>SP</addtitle><description>We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features.</description><subject>Behavioral sciences</subject><subject>Data collection</subject><subject>Data privacy</subject><subject>Data-minimization</subject><subject>Pipelines</subject><subject>Privacy</subject><subject>Smart homes</subject><subject>Smart-Home</subject><subject>System performance</subject><subject>Technological innovation</subject><subject>Transparency</subject><issn>2375-1207</issn><isbn>9781665413169</isbn><isbn>1665413166</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFKw0AURUdBsNZ-gS7mBxLnzSSTGXexViMUDLSuXJQ3yYuNtkmYiZT-vQW7unAWh8Nl7B5EDCDsw6pMtIQklkLK2BqltLQXbGYzA1qnCSjQ9pJNpMrSCKTIrtlNCN9CSKFsMmGfJdEPur5_5Dkvfl30hIFqng-D77Ha8rHniw7djvjaYxcG9NRVR952_BlH5KXvKwqh7b74oR23J7zaox950e8p3LKrBneBZuedso-XxXpeRMv317d5voxaADNGNelaVmhT00CdmMZZcGi0S10moKnIaps6IOWMUNhklshSKjVqnUhA3agpu_v3tkS0GXx7Sjhuzl-oP1ViU1w</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Jin, Haojian</creator><creator>Liu, Gram</creator><creator>Hwang, David</creator><creator>Kumar, Swarun</creator><creator>Agarwal, Yuvraj</creator><creator>Hong, Jason I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202205</creationdate><title>Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes</title><author>Jin, Haojian ; Liu, Gram ; Hwang, David ; Kumar, Swarun ; Agarwal, Yuvraj ; Hong, Jason I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-de6d2ca958f1d48fb91ba86b5b701fce9695b1e3b803af79ee9e526a66421a6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral sciences</topic><topic>Data collection</topic><topic>Data privacy</topic><topic>Data-minimization</topic><topic>Pipelines</topic><topic>Privacy</topic><topic>Smart homes</topic><topic>Smart-Home</topic><topic>System performance</topic><topic>Technological innovation</topic><topic>Transparency</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Haojian</creatorcontrib><creatorcontrib>Liu, Gram</creatorcontrib><creatorcontrib>Hwang, David</creatorcontrib><creatorcontrib>Kumar, Swarun</creatorcontrib><creatorcontrib>Agarwal, Yuvraj</creatorcontrib><creatorcontrib>Hong, Jason I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Haojian</au><au>Liu, Gram</au><au>Hwang, David</au><au>Kumar, Swarun</au><au>Agarwal, Yuvraj</au><au>Hong, Jason I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes</atitle><btitle>2022 IEEE Symposium on Security and Privacy (SP)</btitle><stitle>SP</stitle><date>2022-05</date><risdate>2022</risdate><spage>303</spage><epage>320</epage><pages>303-320</pages><eissn>2375-1207</eissn><eisbn>9781665413169</eisbn><eisbn>1665413166</eisbn><coden>IEEPAD</coden><abstract>We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo's key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features.</abstract><pub>IEEE</pub><doi>10.1109/SP46214.2022.9833629</doi><tpages>18</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-1207
ispartof 2022 IEEE Symposium on Security and Privacy (SP), 2022, p.303-320
issn 2375-1207
language eng
recordid cdi_ieee_primary_9833629
source IEEE Xplore All Conference Series
subjects Behavioral sciences
Data collection
Data privacy
Data-minimization
Pipelines
Privacy
Smart homes
Smart-Home
System performance
Technological innovation
Transparency
title Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Peekaboo:%20A%20Hub-Based%20Approach%20to%20Enable%20Transparency%20in%20Data%20Processing%20within%20Smart%20Homes&rft.btitle=2022%20IEEE%20Symposium%20on%20Security%20and%20Privacy%20(SP)&rft.au=Jin,%20Haojian&rft.date=2022-05&rft.spage=303&rft.epage=320&rft.pages=303-320&rft.eissn=2375-1207&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SP46214.2022.9833629&rft.eisbn=9781665413169&rft.eisbn_list=1665413166&rft_dat=%3Cieee_CHZPO%3E9833629%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-de6d2ca958f1d48fb91ba86b5b701fce9695b1e3b803af79ee9e526a66421a6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9833629&rfr_iscdi=true