Loading…

Singleton bounds for entanglement-assisted classical and quantum error correcting codes

We show that entirely information theoretic methods, based on von Neumann entropies and their properties, can be used to derive Singleton bounds on the performance of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Concretely we show that the triple-rate region of qubit...

Full description

Saved in:
Bibliographic Details
Main Authors: Mamindlapally, Manideep, Winter, Andreas
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 90
container_issue
container_start_page 85
container_title
container_volume
creator Mamindlapally, Manideep
Winter, Andreas
description We show that entirely information theoretic methods, based on von Neumann entropies and their properties, can be used to derive Singleton bounds on the performance of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Concretely we show that the triple-rate region of qubits, cbits and ebits of possible EACQ codes over arbitrary alphabet sizes is contained in the quantum Shannon theoretic rate region of an associated memoryless erasure channel, which turns out to be a polytope. We show that a large part of this region is attainable by certain EACQ codes, whenever the local alphabet size (i.e. Hilbert space dimension) is large enough, in keeping with known facts about classical and quantum minimum distance separable (MDS) codes: in particular all of its extreme points and several important extremal lines. Full details in [1].
doi_str_mv 10.1109/ISIT50566.2022.9834561
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9834561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9834561</ieee_id><sourcerecordid>9834561</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-4128df9ef9705bbc760e15cbe80eb12bed46374968724c8d154349afa90ed3223</originalsourceid><addsrcrecordid>eNotkMtKxDAYhaMgODP6BILkBVrz556lDF4KAy5mxOWQJn-l0osm7cK3t4OzOh8Hzrc4hNwDKwGYe6j21UExpXXJGeels0IqDRdkDVoryUE5fklWS5rCAphrss75izFhBOMr8rFvh88Op3Gg9TgPMdNmTBSHyZ_qfoHC59zmCSMN3QmD76gfIv2Z_TDNPcWUlkUYU8IwLbIFI-YbctX4LuPtOTfk_fnpsH0tdm8v1fZxV7QAdiokcBsbh40zTNV1MJohqFCjZVgDrzFKLYx02houg42gpJDON94xjIJzsSF3_94WEY_fqe19-j2eTxB_U8VTXg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Singleton bounds for entanglement-assisted classical and quantum error correcting codes</title><source>IEEE Xplore All Conference Series</source><creator>Mamindlapally, Manideep ; Winter, Andreas</creator><creatorcontrib>Mamindlapally, Manideep ; Winter, Andreas</creatorcontrib><description>We show that entirely information theoretic methods, based on von Neumann entropies and their properties, can be used to derive Singleton bounds on the performance of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Concretely we show that the triple-rate region of qubits, cbits and ebits of possible EACQ codes over arbitrary alphabet sizes is contained in the quantum Shannon theoretic rate region of an associated memoryless erasure channel, which turns out to be a polytope. We show that a large part of this region is attainable by certain EACQ codes, whenever the local alphabet size (i.e. Hilbert space dimension) is large enough, in keeping with known facts about classical and quantum minimum distance separable (MDS) codes: in particular all of its extreme points and several important extremal lines. Full details in [1].</description><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 1665421592</identifier><identifier>EISBN: 9781665421591</identifier><identifier>DOI: 10.1109/ISIT50566.2022.9834561</identifier><language>eng</language><publisher>IEEE</publisher><subject>Entropy ; Error correction codes ; Hilbert space ; Quantum entanglement ; Qubit</subject><ispartof>2022 IEEE International Symposium on Information Theory (ISIT), 2022, p.85-90</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9834561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9834561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mamindlapally, Manideep</creatorcontrib><creatorcontrib>Winter, Andreas</creatorcontrib><title>Singleton bounds for entanglement-assisted classical and quantum error correcting codes</title><title>2022 IEEE International Symposium on Information Theory (ISIT)</title><addtitle>ISIT</addtitle><description>We show that entirely information theoretic methods, based on von Neumann entropies and their properties, can be used to derive Singleton bounds on the performance of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Concretely we show that the triple-rate region of qubits, cbits and ebits of possible EACQ codes over arbitrary alphabet sizes is contained in the quantum Shannon theoretic rate region of an associated memoryless erasure channel, which turns out to be a polytope. We show that a large part of this region is attainable by certain EACQ codes, whenever the local alphabet size (i.e. Hilbert space dimension) is large enough, in keeping with known facts about classical and quantum minimum distance separable (MDS) codes: in particular all of its extreme points and several important extremal lines. Full details in [1].</description><subject>Entropy</subject><subject>Error correction codes</subject><subject>Hilbert space</subject><subject>Quantum entanglement</subject><subject>Qubit</subject><issn>2157-8117</issn><isbn>1665421592</isbn><isbn>9781665421591</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKxDAYhaMgODP6BILkBVrz556lDF4KAy5mxOWQJn-l0osm7cK3t4OzOh8Hzrc4hNwDKwGYe6j21UExpXXJGeels0IqDRdkDVoryUE5fklWS5rCAphrss75izFhBOMr8rFvh88Op3Gg9TgPMdNmTBSHyZ_qfoHC59zmCSMN3QmD76gfIv2Z_TDNPcWUlkUYU8IwLbIFI-YbctX4LuPtOTfk_fnpsH0tdm8v1fZxV7QAdiokcBsbh40zTNV1MJohqFCjZVgDrzFKLYx02houg42gpJDON94xjIJzsSF3_94WEY_fqe19-j2eTxB_U8VTXg</recordid><startdate>20220626</startdate><enddate>20220626</enddate><creator>Mamindlapally, Manideep</creator><creator>Winter, Andreas</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220626</creationdate><title>Singleton bounds for entanglement-assisted classical and quantum error correcting codes</title><author>Mamindlapally, Manideep ; Winter, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-4128df9ef9705bbc760e15cbe80eb12bed46374968724c8d154349afa90ed3223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Entropy</topic><topic>Error correction codes</topic><topic>Hilbert space</topic><topic>Quantum entanglement</topic><topic>Qubit</topic><toplevel>online_resources</toplevel><creatorcontrib>Mamindlapally, Manideep</creatorcontrib><creatorcontrib>Winter, Andreas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mamindlapally, Manideep</au><au>Winter, Andreas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Singleton bounds for entanglement-assisted classical and quantum error correcting codes</atitle><btitle>2022 IEEE International Symposium on Information Theory (ISIT)</btitle><stitle>ISIT</stitle><date>2022-06-26</date><risdate>2022</risdate><spage>85</spage><epage>90</epage><pages>85-90</pages><eissn>2157-8117</eissn><eisbn>1665421592</eisbn><eisbn>9781665421591</eisbn><abstract>We show that entirely information theoretic methods, based on von Neumann entropies and their properties, can be used to derive Singleton bounds on the performance of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Concretely we show that the triple-rate region of qubits, cbits and ebits of possible EACQ codes over arbitrary alphabet sizes is contained in the quantum Shannon theoretic rate region of an associated memoryless erasure channel, which turns out to be a polytope. We show that a large part of this region is attainable by certain EACQ codes, whenever the local alphabet size (i.e. Hilbert space dimension) is large enough, in keeping with known facts about classical and quantum minimum distance separable (MDS) codes: in particular all of its extreme points and several important extremal lines. Full details in [1].</abstract><pub>IEEE</pub><doi>10.1109/ISIT50566.2022.9834561</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2157-8117
ispartof 2022 IEEE International Symposium on Information Theory (ISIT), 2022, p.85-90
issn 2157-8117
language eng
recordid cdi_ieee_primary_9834561
source IEEE Xplore All Conference Series
subjects Entropy
Error correction codes
Hilbert space
Quantum entanglement
Qubit
title Singleton bounds for entanglement-assisted classical and quantum error correcting codes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Singleton%20bounds%20for%20entanglement-assisted%20classical%20and%20quantum%20error%20correcting%20codes&rft.btitle=2022%20IEEE%20International%20Symposium%20on%20Information%20Theory%20(ISIT)&rft.au=Mamindlapally,%20Manideep&rft.date=2022-06-26&rft.spage=85&rft.epage=90&rft.pages=85-90&rft.eissn=2157-8117&rft_id=info:doi/10.1109/ISIT50566.2022.9834561&rft.eisbn=1665421592&rft.eisbn_list=9781665421591&rft_dat=%3Cieee_CHZPO%3E9834561%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-4128df9ef9705bbc760e15cbe80eb12bed46374968724c8d154349afa90ed3223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9834561&rfr_iscdi=true