Loading…
MPSoC4Drones: An Open Framework for ROS2, PX4, and FPGA Integration
Autonomous drones are facing a tough efficiency challenge due to limitations on the utilized processing hardware units. Among these limitations is the tradeoff between fast computing and low power consumption; between functional complexity and flight time. Recent progressions point to FPGAs for acce...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1255 |
container_issue | |
container_start_page | 1246 |
container_title | |
container_volume | |
creator | Nyboe, Frederik Falk Malle, Nicolaj Haarhoj Ebeid, Emad |
description | Autonomous drones are facing a tough efficiency challenge due to limitations on the utilized processing hardware units. Among these limitations is the tradeoff between fast computing and low power consumption; between functional complexity and flight time. Recent progressions point to FPGAs for accelerating heavy processing. In this work, we present the MPSoC4Drones Framework; a novel framework for organizing FPGA-design and OS build projects. The framework combines tools for creating bootable images for the Ultra96-V2 board.We show how MPSoC4Drones organizes the build, combining the latest well-known tools for research and industrial drone development, Ubuntu 20.04, PX4 autopilot, and ROS2 middleware. We validate the framework through a computationally intensive deep learning use case implemented in the MPSoC4Drones framework. We show the superior throughput and low power consumption of FPGA processing compared to classical CPU and GPU approaches. Finally, we offer the full framework as open-source. |
doi_str_mv | 10.1109/ICUAS54217.2022.9836055 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9836055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9836055</ieee_id><sourcerecordid>9836055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i252t-35303875670748ee812c15db8c1148ed835b4d2a7bc2851e116f2b4345cea0d43</originalsourceid><addsrcrecordid>eNotj9FKwzAUQKMgOOe-wAfzAWu9ucltUt9KtbMwabEOfBtpm0rVtSMtiH-v4J4O5-XAYexWQCgExHd5uksqUih0iIAYxkZGQHTGrkQUkQKKpT5nCyRNgcY4umSrafoAAIkgCcyCpc9lNabqwY-Dm-55MvDi6AaeeXtw36P_5N3o-UtR4ZqXb2rN7dDyrNwkPB9m9-7t3I_DNbvo7NfkVicu2S57fE2fgm2xydNkG_RIOAeSJEijKdKglXHOCGwEtbVphPjz1kiqVYtW1w0aEk6IqMNaSUWNs9AquWQ3_93eObc_-v5g_c_-9Cx_AfO3R_4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MPSoC4Drones: An Open Framework for ROS2, PX4, and FPGA Integration</title><source>IEEE Xplore All Conference Series</source><creator>Nyboe, Frederik Falk ; Malle, Nicolaj Haarhoj ; Ebeid, Emad</creator><creatorcontrib>Nyboe, Frederik Falk ; Malle, Nicolaj Haarhoj ; Ebeid, Emad</creatorcontrib><description>Autonomous drones are facing a tough efficiency challenge due to limitations on the utilized processing hardware units. Among these limitations is the tradeoff between fast computing and low power consumption; between functional complexity and flight time. Recent progressions point to FPGAs for accelerating heavy processing. In this work, we present the MPSoC4Drones Framework; a novel framework for organizing FPGA-design and OS build projects. The framework combines tools for creating bootable images for the Ultra96-V2 board.We show how MPSoC4Drones organizes the build, combining the latest well-known tools for research and industrial drone development, Ubuntu 20.04, PX4 autopilot, and ROS2 middleware. We validate the framework through a computationally intensive deep learning use case implemented in the MPSoC4Drones framework. We show the superior throughput and low power consumption of FPGA processing compared to classical CPU and GPU approaches. Finally, we offer the full framework as open-source.</description><identifier>EISSN: 2575-7296</identifier><identifier>EISBN: 1665405937</identifier><identifier>EISBN: 9781665405935</identifier><identifier>DOI: 10.1109/ICUAS54217.2022.9836055</identifier><language>eng</language><publisher>IEEE</publisher><subject>Field programmable gate arrays ; Middleware ; Object detection ; Power demand ; Throughput ; Visualization</subject><ispartof>2022 International Conference on Unmanned Aircraft Systems (ICUAS), 2022, p.1246-1255</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9836055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9836055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nyboe, Frederik Falk</creatorcontrib><creatorcontrib>Malle, Nicolaj Haarhoj</creatorcontrib><creatorcontrib>Ebeid, Emad</creatorcontrib><title>MPSoC4Drones: An Open Framework for ROS2, PX4, and FPGA Integration</title><title>2022 International Conference on Unmanned Aircraft Systems (ICUAS)</title><addtitle>ICUAS</addtitle><description>Autonomous drones are facing a tough efficiency challenge due to limitations on the utilized processing hardware units. Among these limitations is the tradeoff between fast computing and low power consumption; between functional complexity and flight time. Recent progressions point to FPGAs for accelerating heavy processing. In this work, we present the MPSoC4Drones Framework; a novel framework for organizing FPGA-design and OS build projects. The framework combines tools for creating bootable images for the Ultra96-V2 board.We show how MPSoC4Drones organizes the build, combining the latest well-known tools for research and industrial drone development, Ubuntu 20.04, PX4 autopilot, and ROS2 middleware. We validate the framework through a computationally intensive deep learning use case implemented in the MPSoC4Drones framework. We show the superior throughput and low power consumption of FPGA processing compared to classical CPU and GPU approaches. Finally, we offer the full framework as open-source.</description><subject>Field programmable gate arrays</subject><subject>Middleware</subject><subject>Object detection</subject><subject>Power demand</subject><subject>Throughput</subject><subject>Visualization</subject><issn>2575-7296</issn><isbn>1665405937</isbn><isbn>9781665405935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUQKMgOOe-wAfzAWu9ucltUt9KtbMwabEOfBtpm0rVtSMtiH-v4J4O5-XAYexWQCgExHd5uksqUih0iIAYxkZGQHTGrkQUkQKKpT5nCyRNgcY4umSrafoAAIkgCcyCpc9lNabqwY-Dm-55MvDi6AaeeXtw36P_5N3o-UtR4ZqXb2rN7dDyrNwkPB9m9-7t3I_DNbvo7NfkVicu2S57fE2fgm2xydNkG_RIOAeSJEijKdKglXHOCGwEtbVphPjz1kiqVYtW1w0aEk6IqMNaSUWNs9AquWQ3_93eObc_-v5g_c_-9Cx_AfO3R_4</recordid><startdate>20220621</startdate><enddate>20220621</enddate><creator>Nyboe, Frederik Falk</creator><creator>Malle, Nicolaj Haarhoj</creator><creator>Ebeid, Emad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220621</creationdate><title>MPSoC4Drones: An Open Framework for ROS2, PX4, and FPGA Integration</title><author>Nyboe, Frederik Falk ; Malle, Nicolaj Haarhoj ; Ebeid, Emad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i252t-35303875670748ee812c15db8c1148ed835b4d2a7bc2851e116f2b4345cea0d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Field programmable gate arrays</topic><topic>Middleware</topic><topic>Object detection</topic><topic>Power demand</topic><topic>Throughput</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Nyboe, Frederik Falk</creatorcontrib><creatorcontrib>Malle, Nicolaj Haarhoj</creatorcontrib><creatorcontrib>Ebeid, Emad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nyboe, Frederik Falk</au><au>Malle, Nicolaj Haarhoj</au><au>Ebeid, Emad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MPSoC4Drones: An Open Framework for ROS2, PX4, and FPGA Integration</atitle><btitle>2022 International Conference on Unmanned Aircraft Systems (ICUAS)</btitle><stitle>ICUAS</stitle><date>2022-06-21</date><risdate>2022</risdate><spage>1246</spage><epage>1255</epage><pages>1246-1255</pages><eissn>2575-7296</eissn><eisbn>1665405937</eisbn><eisbn>9781665405935</eisbn><abstract>Autonomous drones are facing a tough efficiency challenge due to limitations on the utilized processing hardware units. Among these limitations is the tradeoff between fast computing and low power consumption; between functional complexity and flight time. Recent progressions point to FPGAs for accelerating heavy processing. In this work, we present the MPSoC4Drones Framework; a novel framework for organizing FPGA-design and OS build projects. The framework combines tools for creating bootable images for the Ultra96-V2 board.We show how MPSoC4Drones organizes the build, combining the latest well-known tools for research and industrial drone development, Ubuntu 20.04, PX4 autopilot, and ROS2 middleware. We validate the framework through a computationally intensive deep learning use case implemented in the MPSoC4Drones framework. We show the superior throughput and low power consumption of FPGA processing compared to classical CPU and GPU approaches. Finally, we offer the full framework as open-source.</abstract><pub>IEEE</pub><doi>10.1109/ICUAS54217.2022.9836055</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-7296 |
ispartof | 2022 International Conference on Unmanned Aircraft Systems (ICUAS), 2022, p.1246-1255 |
issn | 2575-7296 |
language | eng |
recordid | cdi_ieee_primary_9836055 |
source | IEEE Xplore All Conference Series |
subjects | Field programmable gate arrays Middleware Object detection Power demand Throughput Visualization |
title | MPSoC4Drones: An Open Framework for ROS2, PX4, and FPGA Integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MPSoC4Drones:%20An%20Open%20Framework%20for%20ROS2,%20PX4,%20and%20FPGA%20Integration&rft.btitle=2022%20International%20Conference%20on%20Unmanned%20Aircraft%20Systems%20(ICUAS)&rft.au=Nyboe,%20Frederik%20Falk&rft.date=2022-06-21&rft.spage=1246&rft.epage=1255&rft.pages=1246-1255&rft.eissn=2575-7296&rft_id=info:doi/10.1109/ICUAS54217.2022.9836055&rft.eisbn=1665405937&rft.eisbn_list=9781665405935&rft_dat=%3Cieee_CHZPO%3E9836055%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i252t-35303875670748ee812c15db8c1148ed835b4d2a7bc2851e116f2b4345cea0d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9836055&rfr_iscdi=true |