Loading…

Performance Analysis of IOS-Assisted NOMA System With Channel Correlation and Phase Errors

In this paper, we investigate the performance of an intelligent omni-surface (IOS) assisted downlink non-orthogonal multiple access (NOMA) network with phase quantization errors and channel estimation errors, where the channels related to the IOS are spatially correlated. First, upper bounds on the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2022-11, Vol.71 (11), p.11861-11875
Main Authors: Wang, Tianxiong, Badiu, Mihai-Alin, Chen, Gaojie, Coon, Justin P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we investigate the performance of an intelligent omni-surface (IOS) assisted downlink non-orthogonal multiple access (NOMA) network with phase quantization errors and channel estimation errors, where the channels related to the IOS are spatially correlated. First, upper bounds on the average achievable rates of the two users are derived. Then, channel hardening is shown to occur in the proposed system, based on which we derive approximations of the average achievable rates of the two users. The analytical results illustrate that the proposed upper bound and approximation on the average achievable rates are asymptotically equivalent in the number of elements. Furthermore, it is proved that the asymptotic equivalence also holds for the average achievable rates with correlated and uncorrelated channels. Additionally, we extend the analysis by evaluating the average achievable rates for IOS assisted orthogonal multiple access (OMA) and IOS assisted multi-user NOMA scenarios. Simulation results corroborate the theoretical analysis and demonstrate that: i) low-precision elements with only two-bit phase adjustment can achieve the performance close to the ideal continuous phase shifting scheme; ii) The average achievable rates with correlated channels and uncorrelated channels are asymptotically equivalent in the number of elements; iii) IOS-assisted NOMA does not always perform better than OMA due to the reconfigurability of IOS in different time slots.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2022.3193198