Loading…

RIS-Enabled Self-Localization: Leveraging Controllable Reflections With Zero Access Points

Reconfigurable intelligent surfaces (RISs) are one of the most promising technological enablers of the next (6th) generation of wireless systems. In this paper, we introduce a novel use-case of the RIS technology in radio localization, which is enabling the user to estimate its own position via tran...

Full description

Saved in:
Bibliographic Details
Main Authors: Keykhosravi, Kamran, Seco-Granados, Gonzalo, Alexandropoulos, George C., Wymeersch, Henk
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2857
container_issue
container_start_page 2852
container_title
container_volume 2022-May
creator Keykhosravi, Kamran
Seco-Granados, Gonzalo
Alexandropoulos, George C.
Wymeersch, Henk
description Reconfigurable intelligent surfaces (RISs) are one of the most promising technological enablers of the next (6th) generation of wireless systems. In this paper, we introduce a novel use-case of the RIS technology in radio localization, which is enabling the user to estimate its own position via transmitting orthogonal frequency-division multiplexing (OFDM) pilots and processing the signal reflected from the RIS. We demonstrate that user localization in this scenario is possible by deriving Cramér-Rao lower bounds on the positioning error and devising a low-complexity position estimation algorithm. We consider random and directional RIS phase profiles and apply a specific temporal coding to them, such that the reflected signal from the RIS can be separated from the uncontrolled multipath. Finally, we assess the performance of our position estimator for an example system, and show that the proposed algorithm can attain the derived bound at high signal-to-noise ratio values.
doi_str_mv 10.1109/ICC45855.2022.9839225
format conference_proceeding
fullrecord <record><control><sourceid>swepub_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9839225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9839225</ieee_id><sourcerecordid>oai_research_chalmers_se_cf214ecc_040d_4c53_8292_6e7e2210e2c5</sourcerecordid><originalsourceid>FETCH-LOGICAL-i279t-3c2ca67b88fe0d43575e217032ea5058b334cb72d2a2bfe7a7782e78c4ec22783</originalsourceid><addsrcrecordid>eNo9kNFKwzAYhaMouE2fQIS-QGfyJ2lS70aZOhgomyLsJqTp3y3StSOpij69Gw6vzuFwzndxCLlhdMwYzW9nRSGklnIMFGCca54DyBMyZJLrTHOhxCkZsJzrlGnNz_ZeSpryjKoLMozxnVIJOWcDslrMlum0tWWDVbLEpk7nnbON_7G979q7ZI6fGOzat-uk6No-dE1z6CYLrBt0h05M3ny_SVYYumTiHMaYPHe-7eMlOa9tE_HqqCPyej99KR7T-dPDrJjMUw8q71PuwNlMlVrXSCvBpZIITFEOaCWVuuRcuFJBBRbKGpVVSgMq7QQ6AKX5iCz_uPELdx-l2QW_teHbdNabgBFtcBvjNrbZYogmonE1sP3YGSpoZYST3GjIwWSoEIBRhH00Itd_VI-I_8zj0_wXBRVxFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RIS-Enabled Self-Localization: Leveraging Controllable Reflections With Zero Access Points</title><source>IEEE Xplore All Conference Series</source><creator>Keykhosravi, Kamran ; Seco-Granados, Gonzalo ; Alexandropoulos, George C. ; Wymeersch, Henk</creator><creatorcontrib>Keykhosravi, Kamran ; Seco-Granados, Gonzalo ; Alexandropoulos, George C. ; Wymeersch, Henk</creatorcontrib><description>Reconfigurable intelligent surfaces (RISs) are one of the most promising technological enablers of the next (6th) generation of wireless systems. In this paper, we introduce a novel use-case of the RIS technology in radio localization, which is enabling the user to estimate its own position via transmitting orthogonal frequency-division multiplexing (OFDM) pilots and processing the signal reflected from the RIS. We demonstrate that user localization in this scenario is possible by deriving Cramér-Rao lower bounds on the positioning error and devising a low-complexity position estimation algorithm. We consider random and directional RIS phase profiles and apply a specific temporal coding to them, such that the reflected signal from the RIS can be separated from the uncontrolled multipath. Finally, we assess the performance of our position estimator for an example system, and show that the proposed algorithm can attain the derived bound at high signal-to-noise ratio values.</description><identifier>ISSN: 1550-3607</identifier><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 1538683474</identifier><identifier>EISBN: 9781538683477</identifier><identifier>DOI: 10.1109/ICC45855.2022.9839225</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation error ; Location awareness ; maximum likelihood estimation ; OFDM ; radar ; Radio localization ; reconfigurable intelligent surface ; Refining ; Solid modeling ; Three-dimensional displays ; Wireless communication</subject><ispartof>ICC 2022 - IEEE International Conference on Communications, 2022, Vol.2022-May, p.2852-2857</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9839225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,4050,4051,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9839225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/532056$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Keykhosravi, Kamran</creatorcontrib><creatorcontrib>Seco-Granados, Gonzalo</creatorcontrib><creatorcontrib>Alexandropoulos, George C.</creatorcontrib><creatorcontrib>Wymeersch, Henk</creatorcontrib><title>RIS-Enabled Self-Localization: Leveraging Controllable Reflections With Zero Access Points</title><title>ICC 2022 - IEEE International Conference on Communications</title><addtitle>ICC</addtitle><description>Reconfigurable intelligent surfaces (RISs) are one of the most promising technological enablers of the next (6th) generation of wireless systems. In this paper, we introduce a novel use-case of the RIS technology in radio localization, which is enabling the user to estimate its own position via transmitting orthogonal frequency-division multiplexing (OFDM) pilots and processing the signal reflected from the RIS. We demonstrate that user localization in this scenario is possible by deriving Cramér-Rao lower bounds on the positioning error and devising a low-complexity position estimation algorithm. We consider random and directional RIS phase profiles and apply a specific temporal coding to them, such that the reflected signal from the RIS can be separated from the uncontrolled multipath. Finally, we assess the performance of our position estimator for an example system, and show that the proposed algorithm can attain the derived bound at high signal-to-noise ratio values.</description><subject>Estimation error</subject><subject>Location awareness</subject><subject>maximum likelihood estimation</subject><subject>OFDM</subject><subject>radar</subject><subject>Radio localization</subject><subject>reconfigurable intelligent surface</subject><subject>Refining</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Wireless communication</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>1538683474</isbn><isbn>9781538683477</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kNFKwzAYhaMouE2fQIS-QGfyJ2lS70aZOhgomyLsJqTp3y3StSOpij69Gw6vzuFwzndxCLlhdMwYzW9nRSGklnIMFGCca54DyBMyZJLrTHOhxCkZsJzrlGnNz_ZeSpryjKoLMozxnVIJOWcDslrMlum0tWWDVbLEpk7nnbON_7G979q7ZI6fGOzat-uk6No-dE1z6CYLrBt0h05M3ny_SVYYumTiHMaYPHe-7eMlOa9tE_HqqCPyej99KR7T-dPDrJjMUw8q71PuwNlMlVrXSCvBpZIITFEOaCWVuuRcuFJBBRbKGpVVSgMq7QQ6AKX5iCz_uPELdx-l2QW_teHbdNabgBFtcBvjNrbZYogmonE1sP3YGSpoZYST3GjIwWSoEIBRhH00Itd_VI-I_8zj0_wXBRVxFA</recordid><startdate>20220516</startdate><enddate>20220516</enddate><creator>Keykhosravi, Kamran</creator><creator>Seco-Granados, Gonzalo</creator><creator>Alexandropoulos, George C.</creator><creator>Wymeersch, Henk</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>F1S</scope></search><sort><creationdate>20220516</creationdate><title>RIS-Enabled Self-Localization: Leveraging Controllable Reflections With Zero Access Points</title><author>Keykhosravi, Kamran ; Seco-Granados, Gonzalo ; Alexandropoulos, George C. ; Wymeersch, Henk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i279t-3c2ca67b88fe0d43575e217032ea5058b334cb72d2a2bfe7a7782e78c4ec22783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Estimation error</topic><topic>Location awareness</topic><topic>maximum likelihood estimation</topic><topic>OFDM</topic><topic>radar</topic><topic>Radio localization</topic><topic>reconfigurable intelligent surface</topic><topic>Refining</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Keykhosravi, Kamran</creatorcontrib><creatorcontrib>Seco-Granados, Gonzalo</creatorcontrib><creatorcontrib>Alexandropoulos, George C.</creatorcontrib><creatorcontrib>Wymeersch, Henk</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Chalmers tekniska högskola</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keykhosravi, Kamran</au><au>Seco-Granados, Gonzalo</au><au>Alexandropoulos, George C.</au><au>Wymeersch, Henk</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RIS-Enabled Self-Localization: Leveraging Controllable Reflections With Zero Access Points</atitle><btitle>ICC 2022 - IEEE International Conference on Communications</btitle><stitle>ICC</stitle><date>2022-05-16</date><risdate>2022</risdate><volume>2022-May</volume><spage>2852</spage><epage>2857</epage><pages>2852-2857</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><eisbn>1538683474</eisbn><eisbn>9781538683477</eisbn><abstract>Reconfigurable intelligent surfaces (RISs) are one of the most promising technological enablers of the next (6th) generation of wireless systems. In this paper, we introduce a novel use-case of the RIS technology in radio localization, which is enabling the user to estimate its own position via transmitting orthogonal frequency-division multiplexing (OFDM) pilots and processing the signal reflected from the RIS. We demonstrate that user localization in this scenario is possible by deriving Cramér-Rao lower bounds on the positioning error and devising a low-complexity position estimation algorithm. We consider random and directional RIS phase profiles and apply a specific temporal coding to them, such that the reflected signal from the RIS can be separated from the uncontrolled multipath. Finally, we assess the performance of our position estimator for an example system, and show that the proposed algorithm can attain the derived bound at high signal-to-noise ratio values.</abstract><pub>IEEE</pub><doi>10.1109/ICC45855.2022.9839225</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-3607
ispartof ICC 2022 - IEEE International Conference on Communications, 2022, Vol.2022-May, p.2852-2857
issn 1550-3607
1938-1883
language eng
recordid cdi_ieee_primary_9839225
source IEEE Xplore All Conference Series
subjects Estimation error
Location awareness
maximum likelihood estimation
OFDM
radar
Radio localization
reconfigurable intelligent surface
Refining
Solid modeling
Three-dimensional displays
Wireless communication
title RIS-Enabled Self-Localization: Leveraging Controllable Reflections With Zero Access Points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RIS-Enabled%20Self-Localization:%20Leveraging%20Controllable%20Reflections%20With%20Zero%20Access%20Points&rft.btitle=ICC%202022%20-%20IEEE%20International%20Conference%20on%20Communications&rft.au=Keykhosravi,%20Kamran&rft.date=2022-05-16&rft.volume=2022-May&rft.spage=2852&rft.epage=2857&rft.pages=2852-2857&rft.issn=1550-3607&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC45855.2022.9839225&rft.eisbn=1538683474&rft.eisbn_list=9781538683477&rft_dat=%3Cswepub_CHZPO%3Eoai_research_chalmers_se_cf214ecc_040d_4c53_8292_6e7e2210e2c5%3C/swepub_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i279t-3c2ca67b88fe0d43575e217032ea5058b334cb72d2a2bfe7a7782e78c4ec22783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9839225&rfr_iscdi=true