Loading…
A Hierarchical Approach for Decoding Human Reach-and-Grasp Activities based on EEG Signals
Physically disabled patients such as the paralyzed, amputees and stroke patients find it difficult to perform daily activities on their own. A Brain-Computer Interface (BCI) using Electroencephalography (EEG) signals is an option for the rehabilitation of these patients. The BCI function can be enha...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physically disabled patients such as the paralyzed, amputees and stroke patients find it difficult to perform daily activities on their own. A Brain-Computer Interface (BCI) using Electroencephalography (EEG) signals is an option for the rehabilitation of these patients. The BCI function can be enhanced by decoding the movements from a limb through an intuitive control of the prosthetic arm. However, decoding them with the traditional classifiers is a challenging task. In this paper, a two-stage hierarchical framework is proposed for the decoding of reach-and-grasp actions. In stage-l, the action signals are separated from rest segments based on power spectral density features and a fine k-nearest neighbor classifier (FKNN). In stage-2, the signals identified as action are further classified into palmar and lateral type reach-and-grasp actions using the mean absolute value features with the FKNN classifier. In comparison with the existing classifiers, the proposed method has a superior performance of 85.38% test accuracy. |
---|---|
ISSN: | 2474-915X |
DOI: | 10.1109/SPCOM55316.2022.9840794 |