Loading…

Extended Kalman Filter (EKF) Based Localization Algorithms for Mobile Robots Utilizing Vision and Odometry

In this paper, we describe a positioning method for a moving mobile robot in a known environment. The proposed technique incorporates location estimation by letting cameras to recognize the QR code from fixed markers. These fixed points will provide the reference points listed in the database. The s...

Full description

Saved in:
Bibliographic Details
Main Authors: Tran, Hoang T., Vo, Thanh C., Tran, Dong Lt, Nguyen, Quan Na, Ha, Duyen M., Pham, Quang N., Le, Thanh Q., Nguyen, Thang K., Do, Hai T., Nguyen, Minh T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 96
container_issue
container_start_page 91
container_title
container_volume
creator Tran, Hoang T.
Vo, Thanh C.
Tran, Dong Lt
Nguyen, Quan Na
Ha, Duyen M.
Pham, Quang N.
Le, Thanh Q.
Nguyen, Thang K.
Do, Hai T.
Nguyen, Minh T.
description In this paper, we describe a positioning method for a moving mobile robot in a known environment. The proposed technique incorporates location estimation by letting cameras to recognize the QR code from fixed markers. These fixed points will provide the reference points listed in the database. The system will calculate the angle to each landmark and then correct the robot's directions. The extended Kalman filter is deployed to correct the position and orientation of the robot from the error between the viewing angle and the estimate to each datum. The experimental results show that the approach improves and suffices in robot localization for navigation tasks. Results from experiments in real environments are presented including analysis. The results are significant and show promise.
doi_str_mv 10.1109/MELECON53508.2022.9843066
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9843066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9843066</ieee_id><sourcerecordid>9843066</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-f6d82fd858023e7bfdef76c0b2beb7b1e8a71749cfc0dbe79d9f22f1bbbc616e3</originalsourceid><addsrcrecordid>eNotkL1OwzAYRQ0SElXpE7CYDYYU20n8M5YqBdSUSoiyVnb8ubhKYhR7aHl6iuh0h3N0hovQHSVTSol6XFV1NV-_lXlJ5JQRxqZKFjnh_AJNlJCU87IomCTkEo0YLWUmC0mv0STGPSHkVOAqL0doXx0S9BYsXuq20z1e-DbBgO-r5eIBP-l4InVodOt_dPKhx7N2FwafvrqIXRjwKhjfAn4PJqSIN8mfRN_v8KePf7buLV7b0EEajjfoyuk2wuS8Y7RZVB_zl6xeP7_OZ3XmGclT5riVzFlZSsJyEMZZcII3xDADRhgKUgsqCtW4hlgDQlnlGHPUGNNwyiEfo9v_rgeA7ffgOz0ct-d38l_7Rlwc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extended Kalman Filter (EKF) Based Localization Algorithms for Mobile Robots Utilizing Vision and Odometry</title><source>IEEE Xplore All Conference Series</source><creator>Tran, Hoang T. ; Vo, Thanh C. ; Tran, Dong Lt ; Nguyen, Quan Na ; Ha, Duyen M. ; Pham, Quang N. ; Le, Thanh Q. ; Nguyen, Thang K. ; Do, Hai T. ; Nguyen, Minh T.</creator><creatorcontrib>Tran, Hoang T. ; Vo, Thanh C. ; Tran, Dong Lt ; Nguyen, Quan Na ; Ha, Duyen M. ; Pham, Quang N. ; Le, Thanh Q. ; Nguyen, Thang K. ; Do, Hai T. ; Nguyen, Minh T.</creatorcontrib><description>In this paper, we describe a positioning method for a moving mobile robot in a known environment. The proposed technique incorporates location estimation by letting cameras to recognize the QR code from fixed markers. These fixed points will provide the reference points listed in the database. The system will calculate the angle to each landmark and then correct the robot's directions. The extended Kalman filter is deployed to correct the position and orientation of the robot from the error between the viewing angle and the estimate to each datum. The experimental results show that the approach improves and suffices in robot localization for navigation tasks. Results from experiments in real environments are presented including analysis. The results are significant and show promise.</description><identifier>EISSN: 2158-8481</identifier><identifier>EISBN: 9781665442800</identifier><identifier>EISBN: 1665442808</identifier><identifier>DOI: 10.1109/MELECON53508.2022.9843066</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Data fusion ; Extended Kalman filter ; GPS ; Laser range finder ; Localization ; Navigation ; Omni-camera ; QR codes ; Robot localization ; Robot vision systems ; Sensor fusion ; Sensors ; Service robots ; Sonar</subject><ispartof>2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), 2022, p.91-96</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9843066$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9843066$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tran, Hoang T.</creatorcontrib><creatorcontrib>Vo, Thanh C.</creatorcontrib><creatorcontrib>Tran, Dong Lt</creatorcontrib><creatorcontrib>Nguyen, Quan Na</creatorcontrib><creatorcontrib>Ha, Duyen M.</creatorcontrib><creatorcontrib>Pham, Quang N.</creatorcontrib><creatorcontrib>Le, Thanh Q.</creatorcontrib><creatorcontrib>Nguyen, Thang K.</creatorcontrib><creatorcontrib>Do, Hai T.</creatorcontrib><creatorcontrib>Nguyen, Minh T.</creatorcontrib><title>Extended Kalman Filter (EKF) Based Localization Algorithms for Mobile Robots Utilizing Vision and Odometry</title><title>2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)</title><addtitle>MELECON</addtitle><description>In this paper, we describe a positioning method for a moving mobile robot in a known environment. The proposed technique incorporates location estimation by letting cameras to recognize the QR code from fixed markers. These fixed points will provide the reference points listed in the database. The system will calculate the angle to each landmark and then correct the robot's directions. The extended Kalman filter is deployed to correct the position and orientation of the robot from the error between the viewing angle and the estimate to each datum. The experimental results show that the approach improves and suffices in robot localization for navigation tasks. Results from experiments in real environments are presented including analysis. The results are significant and show promise.</description><subject>Cameras</subject><subject>Data fusion</subject><subject>Extended Kalman filter</subject><subject>GPS</subject><subject>Laser range finder</subject><subject>Localization</subject><subject>Navigation</subject><subject>Omni-camera</subject><subject>QR codes</subject><subject>Robot localization</subject><subject>Robot vision systems</subject><subject>Sensor fusion</subject><subject>Sensors</subject><subject>Service robots</subject><subject>Sonar</subject><issn>2158-8481</issn><isbn>9781665442800</isbn><isbn>1665442808</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkL1OwzAYRQ0SElXpE7CYDYYU20n8M5YqBdSUSoiyVnb8ubhKYhR7aHl6iuh0h3N0hovQHSVTSol6XFV1NV-_lXlJ5JQRxqZKFjnh_AJNlJCU87IomCTkEo0YLWUmC0mv0STGPSHkVOAqL0doXx0S9BYsXuq20z1e-DbBgO-r5eIBP-l4InVodOt_dPKhx7N2FwafvrqIXRjwKhjfAn4PJqSIN8mfRN_v8KePf7buLV7b0EEajjfoyuk2wuS8Y7RZVB_zl6xeP7_OZ3XmGclT5riVzFlZSsJyEMZZcII3xDADRhgKUgsqCtW4hlgDQlnlGHPUGNNwyiEfo9v_rgeA7ffgOz0ct-d38l_7Rlwc</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>Tran, Hoang T.</creator><creator>Vo, Thanh C.</creator><creator>Tran, Dong Lt</creator><creator>Nguyen, Quan Na</creator><creator>Ha, Duyen M.</creator><creator>Pham, Quang N.</creator><creator>Le, Thanh Q.</creator><creator>Nguyen, Thang K.</creator><creator>Do, Hai T.</creator><creator>Nguyen, Minh T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220614</creationdate><title>Extended Kalman Filter (EKF) Based Localization Algorithms for Mobile Robots Utilizing Vision and Odometry</title><author>Tran, Hoang T. ; Vo, Thanh C. ; Tran, Dong Lt ; Nguyen, Quan Na ; Ha, Duyen M. ; Pham, Quang N. ; Le, Thanh Q. ; Nguyen, Thang K. ; Do, Hai T. ; Nguyen, Minh T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-f6d82fd858023e7bfdef76c0b2beb7b1e8a71749cfc0dbe79d9f22f1bbbc616e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cameras</topic><topic>Data fusion</topic><topic>Extended Kalman filter</topic><topic>GPS</topic><topic>Laser range finder</topic><topic>Localization</topic><topic>Navigation</topic><topic>Omni-camera</topic><topic>QR codes</topic><topic>Robot localization</topic><topic>Robot vision systems</topic><topic>Sensor fusion</topic><topic>Sensors</topic><topic>Service robots</topic><topic>Sonar</topic><toplevel>online_resources</toplevel><creatorcontrib>Tran, Hoang T.</creatorcontrib><creatorcontrib>Vo, Thanh C.</creatorcontrib><creatorcontrib>Tran, Dong Lt</creatorcontrib><creatorcontrib>Nguyen, Quan Na</creatorcontrib><creatorcontrib>Ha, Duyen M.</creatorcontrib><creatorcontrib>Pham, Quang N.</creatorcontrib><creatorcontrib>Le, Thanh Q.</creatorcontrib><creatorcontrib>Nguyen, Thang K.</creatorcontrib><creatorcontrib>Do, Hai T.</creatorcontrib><creatorcontrib>Nguyen, Minh T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tran, Hoang T.</au><au>Vo, Thanh C.</au><au>Tran, Dong Lt</au><au>Nguyen, Quan Na</au><au>Ha, Duyen M.</au><au>Pham, Quang N.</au><au>Le, Thanh Q.</au><au>Nguyen, Thang K.</au><au>Do, Hai T.</au><au>Nguyen, Minh T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extended Kalman Filter (EKF) Based Localization Algorithms for Mobile Robots Utilizing Vision and Odometry</atitle><btitle>2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)</btitle><stitle>MELECON</stitle><date>2022-06-14</date><risdate>2022</risdate><spage>91</spage><epage>96</epage><pages>91-96</pages><eissn>2158-8481</eissn><eisbn>9781665442800</eisbn><eisbn>1665442808</eisbn><abstract>In this paper, we describe a positioning method for a moving mobile robot in a known environment. The proposed technique incorporates location estimation by letting cameras to recognize the QR code from fixed markers. These fixed points will provide the reference points listed in the database. The system will calculate the angle to each landmark and then correct the robot's directions. The extended Kalman filter is deployed to correct the position and orientation of the robot from the error between the viewing angle and the estimate to each datum. The experimental results show that the approach improves and suffices in robot localization for navigation tasks. Results from experiments in real environments are presented including analysis. The results are significant and show promise.</abstract><pub>IEEE</pub><doi>10.1109/MELECON53508.2022.9843066</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2158-8481
ispartof 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), 2022, p.91-96
issn 2158-8481
language eng
recordid cdi_ieee_primary_9843066
source IEEE Xplore All Conference Series
subjects Cameras
Data fusion
Extended Kalman filter
GPS
Laser range finder
Localization
Navigation
Omni-camera
QR codes
Robot localization
Robot vision systems
Sensor fusion
Sensors
Service robots
Sonar
title Extended Kalman Filter (EKF) Based Localization Algorithms for Mobile Robots Utilizing Vision and Odometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extended%20Kalman%20Filter%20(EKF)%20Based%20Localization%20Algorithms%20for%20Mobile%20Robots%20Utilizing%20Vision%20and%20Odometry&rft.btitle=2022%20IEEE%2021st%20Mediterranean%20Electrotechnical%20Conference%20(MELECON)&rft.au=Tran,%20Hoang%20T.&rft.date=2022-06-14&rft.spage=91&rft.epage=96&rft.pages=91-96&rft.eissn=2158-8481&rft_id=info:doi/10.1109/MELECON53508.2022.9843066&rft.eisbn=9781665442800&rft.eisbn_list=1665442808&rft_dat=%3Cieee_CHZPO%3E9843066%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-f6d82fd858023e7bfdef76c0b2beb7b1e8a71749cfc0dbe79d9f22f1bbbc616e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9843066&rfr_iscdi=true