Loading…
Stage Wise Prediction of Covid-19 Pneumonia from CT images using VGG-16 and SVM
In COVID-19 time, finding medication was the tedious process. Proposed work explains about the segregation of covid-19 CT scan images into categories like mild, moderate and severe on the basis of pneumonia. The dataset uses 227 CT scan images which have been collected manually from hospitals. At fi...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 463 |
container_issue | |
container_start_page | 457 |
container_title | |
container_volume | |
creator | Bipin Nair, B J Akash, S Smaran, R Hemanth, V Bhat, Satvik |
description | In COVID-19 time, finding medication was the tedious process. Proposed work explains about the segregation of covid-19 CT scan images into categories like mild, moderate and severe on the basis of pneumonia. The dataset uses 227 CT scan images which have been collected manually from hospitals. At first, the CT scan input images are preprocessed using K-means clustering algorithm. Then Watershed algorithm is used for the segmentation of the pre-processed images to get the affected region. After getting the affected region, VGG-16 model is used for feature extraction process, for model training 53 CT scan images are used as the testing dataset from 185 CT images. Using extracted feature, SVM model will classify the Covid19 pneumonia as mild, moderate, or severe. Finally the classifier has given an accuracy of 96.15% for the prediction of Covid-19 pneumonia stages. |
doi_str_mv | 10.1109/ICICT54344.2022.9850529 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9850529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9850529</ieee_id><sourcerecordid>9850529</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-44640559f735c2dcb531032982a7cf3d228f9115f96e58546bb364cf3fa69be93</originalsourceid><addsrcrecordid>eNotkN9KwzAchaMgOGafwAvzAqn55X8upWgtTDZYnZcjbZMRsa00neDbW3BX5-JwPj4OQg9AcwBqH6uiKmopuBA5o4zl1kgqmb1CmdUGlJKCGq7pNVoxrTTR2phblKX0SSnljApgYoW2-9mdPP6IyePd5LvYznEc8BhwMf7EjoDFu8Gf-3GIDodp7HFR49gvm4TPKQ4nfChLAgq7ocP7w9sdugnuK_nskmv0_vJcF69ksy2r4mlDIoCZiRBKUClt0Fy2rGsbyWGRsoY53QbeMWaCBZDBKi-NFKppuBJLE5yyjbd8je7_udF7f_yeFqXp93i5gP8BSO1NhQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stage Wise Prediction of Covid-19 Pneumonia from CT images using VGG-16 and SVM</title><source>IEEE Xplore All Conference Series</source><creator>Bipin Nair, B J ; Akash, S ; Smaran, R ; Hemanth, V ; Bhat, Satvik</creator><creatorcontrib>Bipin Nair, B J ; Akash, S ; Smaran, R ; Hemanth, V ; Bhat, Satvik</creatorcontrib><description>In COVID-19 time, finding medication was the tedious process. Proposed work explains about the segregation of covid-19 CT scan images into categories like mild, moderate and severe on the basis of pneumonia. The dataset uses 227 CT scan images which have been collected manually from hospitals. At first, the CT scan input images are preprocessed using K-means clustering algorithm. Then Watershed algorithm is used for the segmentation of the pre-processed images to get the affected region. After getting the affected region, VGG-16 model is used for feature extraction process, for model training 53 CT scan images are used as the testing dataset from 185 CT images. Using extracted feature, SVM model will classify the Covid19 pneumonia as mild, moderate, or severe. Finally the classifier has given an accuracy of 96.15% for the prediction of Covid-19 pneumonia stages.</description><identifier>EISSN: 2767-7788</identifier><identifier>EISBN: 9781665408370</identifier><identifier>EISBN: 1665408375</identifier><identifier>DOI: 10.1109/ICICT54344.2022.9850529</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computed tomography ; COVID-19 ; Deep learning ; Pneumonia ; Pulmonary diseases ; Support vector machine ; Support vector machines ; Training ; Visual Geometry group model-16</subject><ispartof>2022 International Conference on Inventive Computation Technologies (ICICT), 2022, p.457-463</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9850529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9850529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bipin Nair, B J</creatorcontrib><creatorcontrib>Akash, S</creatorcontrib><creatorcontrib>Smaran, R</creatorcontrib><creatorcontrib>Hemanth, V</creatorcontrib><creatorcontrib>Bhat, Satvik</creatorcontrib><title>Stage Wise Prediction of Covid-19 Pneumonia from CT images using VGG-16 and SVM</title><title>2022 International Conference on Inventive Computation Technologies (ICICT)</title><addtitle>ICICT</addtitle><description>In COVID-19 time, finding medication was the tedious process. Proposed work explains about the segregation of covid-19 CT scan images into categories like mild, moderate and severe on the basis of pneumonia. The dataset uses 227 CT scan images which have been collected manually from hospitals. At first, the CT scan input images are preprocessed using K-means clustering algorithm. Then Watershed algorithm is used for the segmentation of the pre-processed images to get the affected region. After getting the affected region, VGG-16 model is used for feature extraction process, for model training 53 CT scan images are used as the testing dataset from 185 CT images. Using extracted feature, SVM model will classify the Covid19 pneumonia as mild, moderate, or severe. Finally the classifier has given an accuracy of 96.15% for the prediction of Covid-19 pneumonia stages.</description><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Pneumonia</subject><subject>Pulmonary diseases</subject><subject>Support vector machine</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Visual Geometry group model-16</subject><issn>2767-7788</issn><isbn>9781665408370</isbn><isbn>1665408375</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN9KwzAchaMgOGafwAvzAqn55X8upWgtTDZYnZcjbZMRsa00neDbW3BX5-JwPj4OQg9AcwBqH6uiKmopuBA5o4zl1kgqmb1CmdUGlJKCGq7pNVoxrTTR2phblKX0SSnljApgYoW2-9mdPP6IyePd5LvYznEc8BhwMf7EjoDFu8Gf-3GIDodp7HFR49gvm4TPKQ4nfChLAgq7ocP7w9sdugnuK_nskmv0_vJcF69ksy2r4mlDIoCZiRBKUClt0Fy2rGsbyWGRsoY53QbeMWaCBZDBKi-NFKppuBJLE5yyjbd8je7_udF7f_yeFqXp93i5gP8BSO1NhQ</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>Bipin Nair, B J</creator><creator>Akash, S</creator><creator>Smaran, R</creator><creator>Hemanth, V</creator><creator>Bhat, Satvik</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220720</creationdate><title>Stage Wise Prediction of Covid-19 Pneumonia from CT images using VGG-16 and SVM</title><author>Bipin Nair, B J ; Akash, S ; Smaran, R ; Hemanth, V ; Bhat, Satvik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-44640559f735c2dcb531032982a7cf3d228f9115f96e58546bb364cf3fa69be93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Pneumonia</topic><topic>Pulmonary diseases</topic><topic>Support vector machine</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Visual Geometry group model-16</topic><toplevel>online_resources</toplevel><creatorcontrib>Bipin Nair, B J</creatorcontrib><creatorcontrib>Akash, S</creatorcontrib><creatorcontrib>Smaran, R</creatorcontrib><creatorcontrib>Hemanth, V</creatorcontrib><creatorcontrib>Bhat, Satvik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bipin Nair, B J</au><au>Akash, S</au><au>Smaran, R</au><au>Hemanth, V</au><au>Bhat, Satvik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stage Wise Prediction of Covid-19 Pneumonia from CT images using VGG-16 and SVM</atitle><btitle>2022 International Conference on Inventive Computation Technologies (ICICT)</btitle><stitle>ICICT</stitle><date>2022-07-20</date><risdate>2022</risdate><spage>457</spage><epage>463</epage><pages>457-463</pages><eissn>2767-7788</eissn><eisbn>9781665408370</eisbn><eisbn>1665408375</eisbn><abstract>In COVID-19 time, finding medication was the tedious process. Proposed work explains about the segregation of covid-19 CT scan images into categories like mild, moderate and severe on the basis of pneumonia. The dataset uses 227 CT scan images which have been collected manually from hospitals. At first, the CT scan input images are preprocessed using K-means clustering algorithm. Then Watershed algorithm is used for the segmentation of the pre-processed images to get the affected region. After getting the affected region, VGG-16 model is used for feature extraction process, for model training 53 CT scan images are used as the testing dataset from 185 CT images. Using extracted feature, SVM model will classify the Covid19 pneumonia as mild, moderate, or severe. Finally the classifier has given an accuracy of 96.15% for the prediction of Covid-19 pneumonia stages.</abstract><pub>IEEE</pub><doi>10.1109/ICICT54344.2022.9850529</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2767-7788 |
ispartof | 2022 International Conference on Inventive Computation Technologies (ICICT), 2022, p.457-463 |
issn | 2767-7788 |
language | eng |
recordid | cdi_ieee_primary_9850529 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Computed tomography COVID-19 Deep learning Pneumonia Pulmonary diseases Support vector machine Support vector machines Training Visual Geometry group model-16 |
title | Stage Wise Prediction of Covid-19 Pneumonia from CT images using VGG-16 and SVM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stage%20Wise%20Prediction%20of%20Covid-19%20Pneumonia%20from%20CT%20images%20using%20VGG-16%20and%20SVM&rft.btitle=2022%20International%20Conference%20on%20Inventive%20Computation%20Technologies%20(ICICT)&rft.au=Bipin%20Nair,%20B%20J&rft.date=2022-07-20&rft.spage=457&rft.epage=463&rft.pages=457-463&rft.eissn=2767-7788&rft_id=info:doi/10.1109/ICICT54344.2022.9850529&rft.eisbn=9781665408370&rft.eisbn_list=1665408375&rft_dat=%3Cieee_CHZPO%3E9850529%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-44640559f735c2dcb531032982a7cf3d228f9115f96e58546bb364cf3fa69be93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9850529&rfr_iscdi=true |