Loading…

Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems

The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.82788-82798
Main Authors: Nguyen, Van Duc, Thi, Hoai Linh Nguyen, Nguyen, Quoc Khuong, Nguyen, Tien Hoa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3196641