Loading…

A Wide Spectral Response Single Photon Avalanche Diode for Backside-Illumination in 55-nm CMOS Process

This article presents a wide-spectral response single photon avalanche diode (SPAD) designed and fabricated in advanced 55-nm CMOS image sensor technology. SPADs with different active areas and doping profiles are simulated by Sentaurus-TCAD to optimize their electrical and optical performances. A g...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2022-09, Vol.69 (9), p.5041-5047
Main Authors: Liu, Yang, Liu, Maliang, Ma, Rui, Hu, Jin, Li, Dong, Wang, Xiayu, Zhu, Zhangming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-323e79bdf6a884f096cf4c623af23b94fbbb492ae3c1dcbf30a404a05d2c4eee3
cites cdi_FETCH-LOGICAL-c338t-323e79bdf6a884f096cf4c623af23b94fbbb492ae3c1dcbf30a404a05d2c4eee3
container_end_page 5047
container_issue 9
container_start_page 5041
container_title IEEE transactions on electron devices
container_volume 69
creator Liu, Yang
Liu, Maliang
Ma, Rui
Hu, Jin
Li, Dong
Wang, Xiayu
Zhu, Zhangming
description This article presents a wide-spectral response single photon avalanche diode (SPAD) designed and fabricated in advanced 55-nm CMOS image sensor technology. SPADs with different active areas and doping profiles are simulated by Sentaurus-TCAD to optimize their electrical and optical performances. A global well-sharing technique is employed to deliver a pixel pitch of 16.4 ~\mu \text{m} and a fill factor of 50.96% for a device with a 6 ~\mu \text{m} radius. The proposed structure is based on a p + /deep n-well (DNW) multiplication junction, extending its spectral response as much as possible. Compared to the existing BSI SPADs, a triple protection method is innovatively used to suppress premature edge breakdown and to reduce the dark count rate (DCR) through a combination of a virtual retrograde DNW, p-well guard ring, and a poly gate ring located above the shallow trench isolation. Furthermore, deep trench isolation is employed to suppress crosstalk. Samples of different radii from 2 to 6 ~\mu \text{m} are manufactured. The SPADs exhibit a low DCR below 20 cps/ \mu \text{m} 2 at room temperature and with a 2-V excess bias. The peak photon detection probability is 20.3% at 660 nm and is maintained at a high value, more than 10%, in the spectral range of 550-820 nm.
doi_str_mv 10.1109/TED.2022.3194488
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9851621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9851621</ieee_id><sourcerecordid>2705862091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-323e79bdf6a884f096cf4c623af23b94fbbb492ae3c1dcbf30a404a05d2c4eee3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TZosa1u1UGmxFZdDJpPY1OlkTKaC_96UFleP9zj3XTgA3GI0wBjJh_V0MiCIkAHFkjEhzkAP5_kwk5zxc9BDCItMUkEvwVWM27RyxkgP2BH8cJWBq9boLqgavpnY-iami2s-awOXG9_5Bo5-VK0avTFw4nzirQ_wUemvmMLZrK73O9eoziXSNTDPs2YHx6-LFVwGr02M1-DCqjqam9Psg_en6Xr8ks0Xz7PxaJ5pSkWXUULNUJaV5UoIZpHk2jLNCVWW0FIyW5Ylk0QZqnGlS0uRYogplFdEM2MM7YP74982-O-9iV2x9fvQpMqCDFEuOEESJwodKR18jMHYog1up8JvgVFxsFkkm8XBZnGymSJ3x4hLNf-4FDnmBNM_CJ5wLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705862091</pqid></control><display><type>article</type><title>A Wide Spectral Response Single Photon Avalanche Diode for Backside-Illumination in 55-nm CMOS Process</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Yang ; Liu, Maliang ; Ma, Rui ; Hu, Jin ; Li, Dong ; Wang, Xiayu ; Zhu, Zhangming</creator><creatorcontrib>Liu, Yang ; Liu, Maliang ; Ma, Rui ; Hu, Jin ; Li, Dong ; Wang, Xiayu ; Zhu, Zhangming</creatorcontrib><description><![CDATA[This article presents a wide-spectral response single photon avalanche diode (SPAD) designed and fabricated in advanced 55-nm CMOS image sensor technology. SPADs with different active areas and doping profiles are simulated by Sentaurus-TCAD to optimize their electrical and optical performances. A global well-sharing technique is employed to deliver a pixel pitch of <inline-formula> <tex-math notation="LaTeX">16.4 ~\mu \text{m} </tex-math></inline-formula> and a fill factor of 50.96% for a device with a <inline-formula> <tex-math notation="LaTeX">6 ~\mu \text{m} </tex-math></inline-formula> radius. The proposed structure is based on a p + /deep n-well (DNW) multiplication junction, extending its spectral response as much as possible. Compared to the existing BSI SPADs, a triple protection method is innovatively used to suppress premature edge breakdown and to reduce the dark count rate (DCR) through a combination of a virtual retrograde DNW, p-well guard ring, and a poly gate ring located above the shallow trench isolation. Furthermore, deep trench isolation is employed to suppress crosstalk. Samples of different radii from 2 to <inline-formula> <tex-math notation="LaTeX">6 ~\mu \text{m} </tex-math></inline-formula> are manufactured. The SPADs exhibit a low DCR below 20 cps/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> 2 at room temperature and with a 2-V excess bias. The peak photon detection probability is 20.3% at 660 nm and is maintained at a high value, more than 10%, in the spectral range of 550-820 nm.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3194488</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Avalanche diodes ; Backside-illuminated (BSI) technology ; CMOS ; CMOS image sensor (CIS) ; CMOS process ; Crosstalk ; detector ; Detectors ; Doping ; Geiger mode ; Junctions ; light detection and ranging (LiDAR) ; Photon avalanches ; Photonics ; Photons ; Room temperature ; single photon avalanche diode (SPAD) ; Single-photon avalanche diodes ; Spectral sensitivity ; Substrates</subject><ispartof>IEEE transactions on electron devices, 2022-09, Vol.69 (9), p.5041-5047</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-323e79bdf6a884f096cf4c623af23b94fbbb492ae3c1dcbf30a404a05d2c4eee3</citedby><cites>FETCH-LOGICAL-c338t-323e79bdf6a884f096cf4c623af23b94fbbb492ae3c1dcbf30a404a05d2c4eee3</cites><orcidid>0000-0001-9012-5648 ; 0000-0003-3181-3277 ; 0000-0002-0368-3017 ; 0000-0001-5015-4989 ; 0000-0003-1421-6745 ; 0000-0002-7764-1928 ; 0000-0001-6981-0974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9851621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Maliang</creatorcontrib><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Hu, Jin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Wang, Xiayu</creatorcontrib><creatorcontrib>Zhu, Zhangming</creatorcontrib><title>A Wide Spectral Response Single Photon Avalanche Diode for Backside-Illumination in 55-nm CMOS Process</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This article presents a wide-spectral response single photon avalanche diode (SPAD) designed and fabricated in advanced 55-nm CMOS image sensor technology. SPADs with different active areas and doping profiles are simulated by Sentaurus-TCAD to optimize their electrical and optical performances. A global well-sharing technique is employed to deliver a pixel pitch of <inline-formula> <tex-math notation="LaTeX">16.4 ~\mu \text{m} </tex-math></inline-formula> and a fill factor of 50.96% for a device with a <inline-formula> <tex-math notation="LaTeX">6 ~\mu \text{m} </tex-math></inline-formula> radius. The proposed structure is based on a p + /deep n-well (DNW) multiplication junction, extending its spectral response as much as possible. Compared to the existing BSI SPADs, a triple protection method is innovatively used to suppress premature edge breakdown and to reduce the dark count rate (DCR) through a combination of a virtual retrograde DNW, p-well guard ring, and a poly gate ring located above the shallow trench isolation. Furthermore, deep trench isolation is employed to suppress crosstalk. Samples of different radii from 2 to <inline-formula> <tex-math notation="LaTeX">6 ~\mu \text{m} </tex-math></inline-formula> are manufactured. The SPADs exhibit a low DCR below 20 cps/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> 2 at room temperature and with a 2-V excess bias. The peak photon detection probability is 20.3% at 660 nm and is maintained at a high value, more than 10%, in the spectral range of 550-820 nm.]]></description><subject>Avalanche diodes</subject><subject>Backside-illuminated (BSI) technology</subject><subject>CMOS</subject><subject>CMOS image sensor (CIS)</subject><subject>CMOS process</subject><subject>Crosstalk</subject><subject>detector</subject><subject>Detectors</subject><subject>Doping</subject><subject>Geiger mode</subject><subject>Junctions</subject><subject>light detection and ranging (LiDAR)</subject><subject>Photon avalanches</subject><subject>Photonics</subject><subject>Photons</subject><subject>Room temperature</subject><subject>single photon avalanche diode (SPAD)</subject><subject>Single-photon avalanche diodes</subject><subject>Spectral sensitivity</subject><subject>Substrates</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TZosa1u1UGmxFZdDJpPY1OlkTKaC_96UFleP9zj3XTgA3GI0wBjJh_V0MiCIkAHFkjEhzkAP5_kwk5zxc9BDCItMUkEvwVWM27RyxkgP2BH8cJWBq9boLqgavpnY-iami2s-awOXG9_5Bo5-VK0avTFw4nzirQ_wUemvmMLZrK73O9eoziXSNTDPs2YHx6-LFVwGr02M1-DCqjqam9Psg_en6Xr8ks0Xz7PxaJ5pSkWXUULNUJaV5UoIZpHk2jLNCVWW0FIyW5Ylk0QZqnGlS0uRYogplFdEM2MM7YP74982-O-9iV2x9fvQpMqCDFEuOEESJwodKR18jMHYog1up8JvgVFxsFkkm8XBZnGymSJ3x4hLNf-4FDnmBNM_CJ5wLw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liu, Yang</creator><creator>Liu, Maliang</creator><creator>Ma, Rui</creator><creator>Hu, Jin</creator><creator>Li, Dong</creator><creator>Wang, Xiayu</creator><creator>Zhu, Zhangming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9012-5648</orcidid><orcidid>https://orcid.org/0000-0003-3181-3277</orcidid><orcidid>https://orcid.org/0000-0002-0368-3017</orcidid><orcidid>https://orcid.org/0000-0001-5015-4989</orcidid><orcidid>https://orcid.org/0000-0003-1421-6745</orcidid><orcidid>https://orcid.org/0000-0002-7764-1928</orcidid><orcidid>https://orcid.org/0000-0001-6981-0974</orcidid></search><sort><creationdate>20220901</creationdate><title>A Wide Spectral Response Single Photon Avalanche Diode for Backside-Illumination in 55-nm CMOS Process</title><author>Liu, Yang ; Liu, Maliang ; Ma, Rui ; Hu, Jin ; Li, Dong ; Wang, Xiayu ; Zhu, Zhangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-323e79bdf6a884f096cf4c623af23b94fbbb492ae3c1dcbf30a404a05d2c4eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Avalanche diodes</topic><topic>Backside-illuminated (BSI) technology</topic><topic>CMOS</topic><topic>CMOS image sensor (CIS)</topic><topic>CMOS process</topic><topic>Crosstalk</topic><topic>detector</topic><topic>Detectors</topic><topic>Doping</topic><topic>Geiger mode</topic><topic>Junctions</topic><topic>light detection and ranging (LiDAR)</topic><topic>Photon avalanches</topic><topic>Photonics</topic><topic>Photons</topic><topic>Room temperature</topic><topic>single photon avalanche diode (SPAD)</topic><topic>Single-photon avalanche diodes</topic><topic>Spectral sensitivity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Maliang</creatorcontrib><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Hu, Jin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Wang, Xiayu</creatorcontrib><creatorcontrib>Zhu, Zhangming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Liu, Maliang</au><au>Ma, Rui</au><au>Hu, Jin</au><au>Li, Dong</au><au>Wang, Xiayu</au><au>Zhu, Zhangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wide Spectral Response Single Photon Avalanche Diode for Backside-Illumination in 55-nm CMOS Process</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>69</volume><issue>9</issue><spage>5041</spage><epage>5047</epage><pages>5041-5047</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This article presents a wide-spectral response single photon avalanche diode (SPAD) designed and fabricated in advanced 55-nm CMOS image sensor technology. SPADs with different active areas and doping profiles are simulated by Sentaurus-TCAD to optimize their electrical and optical performances. A global well-sharing technique is employed to deliver a pixel pitch of <inline-formula> <tex-math notation="LaTeX">16.4 ~\mu \text{m} </tex-math></inline-formula> and a fill factor of 50.96% for a device with a <inline-formula> <tex-math notation="LaTeX">6 ~\mu \text{m} </tex-math></inline-formula> radius. The proposed structure is based on a p + /deep n-well (DNW) multiplication junction, extending its spectral response as much as possible. Compared to the existing BSI SPADs, a triple protection method is innovatively used to suppress premature edge breakdown and to reduce the dark count rate (DCR) through a combination of a virtual retrograde DNW, p-well guard ring, and a poly gate ring located above the shallow trench isolation. Furthermore, deep trench isolation is employed to suppress crosstalk. Samples of different radii from 2 to <inline-formula> <tex-math notation="LaTeX">6 ~\mu \text{m} </tex-math></inline-formula> are manufactured. The SPADs exhibit a low DCR below 20 cps/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> 2 at room temperature and with a 2-V excess bias. The peak photon detection probability is 20.3% at 660 nm and is maintained at a high value, more than 10%, in the spectral range of 550-820 nm.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3194488</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9012-5648</orcidid><orcidid>https://orcid.org/0000-0003-3181-3277</orcidid><orcidid>https://orcid.org/0000-0002-0368-3017</orcidid><orcidid>https://orcid.org/0000-0001-5015-4989</orcidid><orcidid>https://orcid.org/0000-0003-1421-6745</orcidid><orcidid>https://orcid.org/0000-0002-7764-1928</orcidid><orcidid>https://orcid.org/0000-0001-6981-0974</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-09, Vol.69 (9), p.5041-5047
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9851621
source IEEE Electronic Library (IEL) Journals
subjects Avalanche diodes
Backside-illuminated (BSI) technology
CMOS
CMOS image sensor (CIS)
CMOS process
Crosstalk
detector
Detectors
Doping
Geiger mode
Junctions
light detection and ranging (LiDAR)
Photon avalanches
Photonics
Photons
Room temperature
single photon avalanche diode (SPAD)
Single-photon avalanche diodes
Spectral sensitivity
Substrates
title A Wide Spectral Response Single Photon Avalanche Diode for Backside-Illumination in 55-nm CMOS Process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wide%20Spectral%20Response%20Single%20Photon%20Avalanche%20Diode%20for%20Backside-Illumination%20in%2055-nm%20CMOS%20Process&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Liu,%20Yang&rft.date=2022-09-01&rft.volume=69&rft.issue=9&rft.spage=5041&rft.epage=5047&rft.pages=5041-5047&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3194488&rft_dat=%3Cproquest_ieee_%3E2705862091%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-323e79bdf6a884f096cf4c623af23b94fbbb492ae3c1dcbf30a404a05d2c4eee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2705862091&rft_id=info:pmid/&rft_ieee_id=9851621&rfr_iscdi=true