Loading…
Online Trajectory Replan for Gliding Vehicle Considering Terminal Velocity Constraint
Controlling the terminal velocity can improve the effectiveness of guided missiles. In particular, a ballistic missile propelled by solid rocket motors can successfully accomplish its mission when it hits the target at an appropriate speed. In this study, a method for modifying the trajectory of gli...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2023-04, Vol.59 (2), p.1067-1083 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-ec5933ed270a86e37f1e2942346ea4070ea99f621d44c335998e593f0aeb519b3 |
container_end_page | 1083 |
container_issue | 2 |
container_start_page | 1067 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 59 |
creator | Kim, Youngil Cho, Namhoon Park, Jongho Kim, Youdan |
description | Controlling the terminal velocity can improve the effectiveness of guided missiles. In particular, a ballistic missile propelled by solid rocket motors can successfully accomplish its mission when it hits the target at an appropriate speed. In this study, a method for modifying the trajectory of gliding vehicle, i.e., gliding ballistic missiles, is proposed to meet the terminal velocity constraint by reflecting the effects of the environment during a flight. The proposed framework consisting of trajectory generation and dynamic propagation compensates for errors due to uncertainties in real time. The trajectory generation step provides various trajectories that satisfy the given constraints based on information about the current state. The dynamic propagation step efficiently predicts the terminal velocity for each of the generated trajectories and finds the trajectory with the lowest terminal speed error. A numerical simulation is performed considering various conditions to demonstrate the performance of the proposed method. |
doi_str_mv | 10.1109/TAES.2022.3197103 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9851941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9851941</ieee_id><sourcerecordid>2799860952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ec5933ed270a86e37f1e2942346ea4070ea99f621d44c335998e593f0aeb519b3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwAxCXSpw74iRtk-M0jYE0aRJ0XKOsdSFTl46kO-zfL2UTJ8t-79nWR8gj0AkAVS_ldP45YZSxCQdVAOVXZARZVqQqp_yajCgFmSqWwS25C2EbWyEFH5H1yrXWYVJ6s8Wq7_wx-cB9a1zSdD5ZtLa27jv5wh9btZjMOhdsjX6Yleh31pk2im1X2f74p_beWNffk5vGtAEfLnVM1q_zcvaWLleL99l0mVZMyj7FKlOcY80KamSOvGgAmRKMixyNoAVFo1STM6iFqDjPlJIYEw01uMlAbfiYPJ_37n33e8DQ62138PGpoFkR3TlVGYsuOLsq34XgsdF7b3fGHzVQPdDTAz090NMXejHzdM5YRPz3KxnPCuAnfoBrDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799860952</pqid></control><display><type>article</type><title>Online Trajectory Replan for Gliding Vehicle Considering Terminal Velocity Constraint</title><source>IEEE Xplore (Online service)</source><creator>Kim, Youngil ; Cho, Namhoon ; Park, Jongho ; Kim, Youdan</creator><creatorcontrib>Kim, Youngil ; Cho, Namhoon ; Park, Jongho ; Kim, Youdan</creatorcontrib><description>Controlling the terminal velocity can improve the effectiveness of guided missiles. In particular, a ballistic missile propelled by solid rocket motors can successfully accomplish its mission when it hits the target at an appropriate speed. In this study, a method for modifying the trajectory of gliding vehicle, i.e., gliding ballistic missiles, is proposed to meet the terminal velocity constraint by reflecting the effects of the environment during a flight. The proposed framework consisting of trajectory generation and dynamic propagation compensates for errors due to uncertainties in real time. The trajectory generation step provides various trajectories that satisfy the given constraints based on information about the current state. The dynamic propagation step efficiently predicts the terminal velocity for each of the generated trajectories and finds the trajectory with the lowest terminal speed error. A numerical simulation is performed considering various conditions to demonstrate the performance of the proposed method.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2022.3197103</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamics ; Ballistic missiles ; Dynamic propagation ; Gliding ; Guided missiles ; Heuristic algorithms ; Mathematical models ; Missile trajectories ; Missiles ; Planning ; Propagation ; Rocket components ; Solid propellant rocket engines ; Terminal velocity ; terminal velocity constraint ; Trajectory ; trajectory generation ; Vehicle dynamics</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-04, Vol.59 (2), p.1067-1083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-ec5933ed270a86e37f1e2942346ea4070ea99f621d44c335998e593f0aeb519b3</cites><orcidid>0000-0001-5041-8243 ; 0000-0001-9999-9501 ; 0000-0001-5406-0306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9851941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kim, Youngil</creatorcontrib><creatorcontrib>Cho, Namhoon</creatorcontrib><creatorcontrib>Park, Jongho</creatorcontrib><creatorcontrib>Kim, Youdan</creatorcontrib><title>Online Trajectory Replan for Gliding Vehicle Considering Terminal Velocity Constraint</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Controlling the terminal velocity can improve the effectiveness of guided missiles. In particular, a ballistic missile propelled by solid rocket motors can successfully accomplish its mission when it hits the target at an appropriate speed. In this study, a method for modifying the trajectory of gliding vehicle, i.e., gliding ballistic missiles, is proposed to meet the terminal velocity constraint by reflecting the effects of the environment during a flight. The proposed framework consisting of trajectory generation and dynamic propagation compensates for errors due to uncertainties in real time. The trajectory generation step provides various trajectories that satisfy the given constraints based on information about the current state. The dynamic propagation step efficiently predicts the terminal velocity for each of the generated trajectories and finds the trajectory with the lowest terminal speed error. A numerical simulation is performed considering various conditions to demonstrate the performance of the proposed method.</description><subject>Aerodynamics</subject><subject>Ballistic missiles</subject><subject>Dynamic propagation</subject><subject>Gliding</subject><subject>Guided missiles</subject><subject>Heuristic algorithms</subject><subject>Mathematical models</subject><subject>Missile trajectories</subject><subject>Missiles</subject><subject>Planning</subject><subject>Propagation</subject><subject>Rocket components</subject><subject>Solid propellant rocket engines</subject><subject>Terminal velocity</subject><subject>terminal velocity constraint</subject><subject>Trajectory</subject><subject>trajectory generation</subject><subject>Vehicle dynamics</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwzAMhSMEEmPwAxCXSpw74iRtk-M0jYE0aRJ0XKOsdSFTl46kO-zfL2UTJ8t-79nWR8gj0AkAVS_ldP45YZSxCQdVAOVXZARZVqQqp_yajCgFmSqWwS25C2EbWyEFH5H1yrXWYVJ6s8Wq7_wx-cB9a1zSdD5ZtLa27jv5wh9btZjMOhdsjX6Yleh31pk2im1X2f74p_beWNffk5vGtAEfLnVM1q_zcvaWLleL99l0mVZMyj7FKlOcY80KamSOvGgAmRKMixyNoAVFo1STM6iFqDjPlJIYEw01uMlAbfiYPJ_37n33e8DQ62138PGpoFkR3TlVGYsuOLsq34XgsdF7b3fGHzVQPdDTAz090NMXejHzdM5YRPz3KxnPCuAnfoBrDw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Kim, Youngil</creator><creator>Cho, Namhoon</creator><creator>Park, Jongho</creator><creator>Kim, Youdan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5041-8243</orcidid><orcidid>https://orcid.org/0000-0001-9999-9501</orcidid><orcidid>https://orcid.org/0000-0001-5406-0306</orcidid></search><sort><creationdate>20230401</creationdate><title>Online Trajectory Replan for Gliding Vehicle Considering Terminal Velocity Constraint</title><author>Kim, Youngil ; Cho, Namhoon ; Park, Jongho ; Kim, Youdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ec5933ed270a86e37f1e2942346ea4070ea99f621d44c335998e593f0aeb519b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamics</topic><topic>Ballistic missiles</topic><topic>Dynamic propagation</topic><topic>Gliding</topic><topic>Guided missiles</topic><topic>Heuristic algorithms</topic><topic>Mathematical models</topic><topic>Missile trajectories</topic><topic>Missiles</topic><topic>Planning</topic><topic>Propagation</topic><topic>Rocket components</topic><topic>Solid propellant rocket engines</topic><topic>Terminal velocity</topic><topic>terminal velocity constraint</topic><topic>Trajectory</topic><topic>trajectory generation</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngil</creatorcontrib><creatorcontrib>Cho, Namhoon</creatorcontrib><creatorcontrib>Park, Jongho</creatorcontrib><creatorcontrib>Kim, Youdan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngil</au><au>Cho, Namhoon</au><au>Park, Jongho</au><au>Kim, Youdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Trajectory Replan for Gliding Vehicle Considering Terminal Velocity Constraint</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>59</volume><issue>2</issue><spage>1067</spage><epage>1083</epage><pages>1067-1083</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Controlling the terminal velocity can improve the effectiveness of guided missiles. In particular, a ballistic missile propelled by solid rocket motors can successfully accomplish its mission when it hits the target at an appropriate speed. In this study, a method for modifying the trajectory of gliding vehicle, i.e., gliding ballistic missiles, is proposed to meet the terminal velocity constraint by reflecting the effects of the environment during a flight. The proposed framework consisting of trajectory generation and dynamic propagation compensates for errors due to uncertainties in real time. The trajectory generation step provides various trajectories that satisfy the given constraints based on information about the current state. The dynamic propagation step efficiently predicts the terminal velocity for each of the generated trajectories and finds the trajectory with the lowest terminal speed error. A numerical simulation is performed considering various conditions to demonstrate the performance of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2022.3197103</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5041-8243</orcidid><orcidid>https://orcid.org/0000-0001-9999-9501</orcidid><orcidid>https://orcid.org/0000-0001-5406-0306</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2023-04, Vol.59 (2), p.1067-1083 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_9851941 |
source | IEEE Xplore (Online service) |
subjects | Aerodynamics Ballistic missiles Dynamic propagation Gliding Guided missiles Heuristic algorithms Mathematical models Missile trajectories Missiles Planning Propagation Rocket components Solid propellant rocket engines Terminal velocity terminal velocity constraint Trajectory trajectory generation Vehicle dynamics |
title | Online Trajectory Replan for Gliding Vehicle Considering Terminal Velocity Constraint |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Trajectory%20Replan%20for%20Gliding%20Vehicle%20Considering%20Terminal%20Velocity%20Constraint&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Kim,%20Youngil&rft.date=2023-04-01&rft.volume=59&rft.issue=2&rft.spage=1067&rft.epage=1083&rft.pages=1067-1083&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2022.3197103&rft_dat=%3Cproquest_ieee_%3E2799860952%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-ec5933ed270a86e37f1e2942346ea4070ea99f621d44c335998e593f0aeb519b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799860952&rft_id=info:pmid/&rft_ieee_id=9851941&rfr_iscdi=true |