Loading…
Self-supervised Vision Transformers for Land-cover Segmentation and Classification
Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use of large-scale labelled image datasets for supervised pre-training. This poses a si...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1430 |
container_issue | |
container_start_page | 1421 |
container_title | |
container_volume | |
creator | Scheibenreif, Linus Hanna, Joelle Mommert, Michael Borth, Damian |
description | Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use of large-scale labelled image datasets for supervised pre-training. This poses a significant challenge for the adaption of vision Transformers to domains where datasets with millions of labelled samples are not available. In this work, we bridge the gap between ConvNets and Transformers for Earth observation by self-supervised pre-training on large-scale unlabelled remote sensing data 1 . We show that self-supervised pre-training yields latent task-agnostic representations that can be utilized for both land cover classification and segmentation tasks, where they significantly outperform the fully supervised baselines. Additionally, we find that subsequent fine-tuning of Transformers for specific downstream tasks performs on-par with commonly used ConvNet architectures. An ablation study further illustrates that the labelled dataset size can be reduced to one-tenth after self-supervised pre-training while still maintaining the performance of the fully supervised approach. |
doi_str_mv | 10.1109/CVPRW56347.2022.00148 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9857009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9857009</ieee_id><sourcerecordid>9857009</sourcerecordid><originalsourceid>FETCH-LOGICAL-i180t-dc01d1393a04d171e69a30e2e7dc81bbd34f5a592c8b39c8511481fac0c6ad163</originalsourceid><addsrcrecordid>eNotj9tKxDAURaMgOI7zBSL0B1rPaZo0eZTiDQrKzDg-DmlyKpFehqQO-PfWy9OCxWLDZuwaIUMEfVPtXtZvQvKizHLI8wwAC3XCLlBKUaiSa33KFjlKSEuB8pytYvyAOQIlhOYLtt5Q16bx80Dh6CO5ZOejH4dkG8wQ2zH0FGIyM6nN4FI7HikkG3rvaZjM9BPOOqk6E6Nvvf1Vl-ysNV2k1T-X7PX-bls9pvXzw1N1W6ceFUyps4AOueYGCoclktSGA-VUOquwaRwvWmGEzq1quLZK4PwMW2PBSuNQ8iW7-tv1RLQ_BN-b8LXXSpQAmn8DxVNR4A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-supervised Vision Transformers for Land-cover Segmentation and Classification</title><source>IEEE Xplore All Conference Series</source><creator>Scheibenreif, Linus ; Hanna, Joelle ; Mommert, Michael ; Borth, Damian</creator><creatorcontrib>Scheibenreif, Linus ; Hanna, Joelle ; Mommert, Michael ; Borth, Damian</creatorcontrib><description>Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use of large-scale labelled image datasets for supervised pre-training. This poses a significant challenge for the adaption of vision Transformers to domains where datasets with millions of labelled samples are not available. In this work, we bridge the gap between ConvNets and Transformers for Earth observation by self-supervised pre-training on large-scale unlabelled remote sensing data 1 . We show that self-supervised pre-training yields latent task-agnostic representations that can be utilized for both land cover classification and segmentation tasks, where they significantly outperform the fully supervised baselines. Additionally, we find that subsequent fine-tuning of Transformers for specific downstream tasks performs on-par with commonly used ConvNet architectures. An ablation study further illustrates that the labelled dataset size can be reduced to one-tenth after self-supervised pre-training while still maintaining the performance of the fully supervised approach.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1665487399</identifier><identifier>EISBN: 9781665487399</identifier><identifier>DOI: 10.1109/CVPRW56347.2022.00148</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer vision ; Conferences ; Earth ; Image segmentation ; Training ; Transformers</subject><ispartof>2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022, p.1421-1430</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9857009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23911,23912,25120,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9857009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scheibenreif, Linus</creatorcontrib><creatorcontrib>Hanna, Joelle</creatorcontrib><creatorcontrib>Mommert, Michael</creatorcontrib><creatorcontrib>Borth, Damian</creatorcontrib><title>Self-supervised Vision Transformers for Land-cover Segmentation and Classification</title><title>2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use of large-scale labelled image datasets for supervised pre-training. This poses a significant challenge for the adaption of vision Transformers to domains where datasets with millions of labelled samples are not available. In this work, we bridge the gap between ConvNets and Transformers for Earth observation by self-supervised pre-training on large-scale unlabelled remote sensing data 1 . We show that self-supervised pre-training yields latent task-agnostic representations that can be utilized for both land cover classification and segmentation tasks, where they significantly outperform the fully supervised baselines. Additionally, we find that subsequent fine-tuning of Transformers for specific downstream tasks performs on-par with commonly used ConvNet architectures. An ablation study further illustrates that the labelled dataset size can be reduced to one-tenth after self-supervised pre-training while still maintaining the performance of the fully supervised approach.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Earth</subject><subject>Image segmentation</subject><subject>Training</subject><subject>Transformers</subject><issn>2160-7516</issn><isbn>1665487399</isbn><isbn>9781665487399</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9tKxDAURaMgOI7zBSL0B1rPaZo0eZTiDQrKzDg-DmlyKpFehqQO-PfWy9OCxWLDZuwaIUMEfVPtXtZvQvKizHLI8wwAC3XCLlBKUaiSa33KFjlKSEuB8pytYvyAOQIlhOYLtt5Q16bx80Dh6CO5ZOejH4dkG8wQ2zH0FGIyM6nN4FI7HikkG3rvaZjM9BPOOqk6E6Nvvf1Vl-ysNV2k1T-X7PX-bls9pvXzw1N1W6ceFUyps4AOueYGCoclktSGA-VUOquwaRwvWmGEzq1quLZK4PwMW2PBSuNQ8iW7-tv1RLQ_BN-b8LXXSpQAmn8DxVNR4A</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Scheibenreif, Linus</creator><creator>Hanna, Joelle</creator><creator>Mommert, Michael</creator><creator>Borth, Damian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220101</creationdate><title>Self-supervised Vision Transformers for Land-cover Segmentation and Classification</title><author>Scheibenreif, Linus ; Hanna, Joelle ; Mommert, Michael ; Borth, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i180t-dc01d1393a04d171e69a30e2e7dc81bbd34f5a592c8b39c8511481fac0c6ad163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Earth</topic><topic>Image segmentation</topic><topic>Training</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Scheibenreif, Linus</creatorcontrib><creatorcontrib>Hanna, Joelle</creatorcontrib><creatorcontrib>Mommert, Michael</creatorcontrib><creatorcontrib>Borth, Damian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scheibenreif, Linus</au><au>Hanna, Joelle</au><au>Mommert, Michael</au><au>Borth, Damian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-supervised Vision Transformers for Land-cover Segmentation and Classification</atitle><btitle>2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2022-01-01</date><risdate>2022</risdate><spage>1421</spage><epage>1430</epage><pages>1421-1430</pages><eissn>2160-7516</eissn><eisbn>1665487399</eisbn><eisbn>9781665487399</eisbn><coden>IEEPAD</coden><abstract>Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use of large-scale labelled image datasets for supervised pre-training. This poses a significant challenge for the adaption of vision Transformers to domains where datasets with millions of labelled samples are not available. In this work, we bridge the gap between ConvNets and Transformers for Earth observation by self-supervised pre-training on large-scale unlabelled remote sensing data 1 . We show that self-supervised pre-training yields latent task-agnostic representations that can be utilized for both land cover classification and segmentation tasks, where they significantly outperform the fully supervised baselines. Additionally, we find that subsequent fine-tuning of Transformers for specific downstream tasks performs on-par with commonly used ConvNet architectures. An ablation study further illustrates that the labelled dataset size can be reduced to one-tenth after self-supervised pre-training while still maintaining the performance of the fully supervised approach.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW56347.2022.00148</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022, p.1421-1430 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_9857009 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Computer vision Conferences Earth Image segmentation Training Transformers |
title | Self-supervised Vision Transformers for Land-cover Segmentation and Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-supervised%20Vision%20Transformers%20for%20Land-cover%20Segmentation%20and%20Classification&rft.btitle=2022%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Scheibenreif,%20Linus&rft.date=2022-01-01&rft.spage=1421&rft.epage=1430&rft.pages=1421-1430&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW56347.2022.00148&rft.eisbn=1665487399&rft.eisbn_list=9781665487399&rft_dat=%3Cieee_CHZPO%3E9857009%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i180t-dc01d1393a04d171e69a30e2e7dc81bbd34f5a592c8b39c8511481fac0c6ad163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9857009&rfr_iscdi=true |