Loading…
Stargazer: A Transformer-based Driver Action Detection System for Intelligent Transportation
Distracted driver actions can be dangerous and cause severe accidents. Thus, it is important to detect and eliminate distracted driving behaviors on the road to save lives. To this end, we study driver action detection using videos captured inside the vehicle. We propose Stargazer, an efficient, tra...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distracted driver actions can be dangerous and cause severe accidents. Thus, it is important to detect and eliminate distracted driving behaviors on the road to save lives. To this end, we study driver action detection using videos captured inside the vehicle. We propose Stargazer, an efficient, transformer-based system exploiting rich temporal features about the human behavioral information, with a simple yet effective action temporal localization framework. The core of our system contains an improved version of the multi-scale vision transformer network, which learns a hierarchy of robust representations. We then use a sliding-window classification strategy to facilitate temporal localization of actions-of-interest. The proposed system wins the second place in the Naturalistic Driving Action Recognition of AI City Challenge 2022 (Track 3) 1 . The code and models are released 2 . |
---|---|
ISSN: | 2160-7516 |
DOI: | 10.1109/CVPRW56347.2022.00356 |