Loading…
CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms
Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Net...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 727 |
container_issue | |
container_start_page | 723 |
container_title | |
container_volume | |
creator | Zhang, Licheng Cao, Fakun Cao, Jing Zhu, Beibei Li, Sheng He, Xiongxiong |
description | Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Networks (CNN) have been frequently used for cancer classification tasks. Nevertheless, the potential global and channel relationships of the image may be overlooked and influence the representation capability of features.Also, the results are often not convincing for pathologists due to the un-interpretability. We propose a lightweight colorectal tumor classification network with only 10.02M parameters based on CNN and Channel Attention Mech-anisms(CCANet). The four classification tasks performed on the public dataset Warwick_qu reached an accuracy of 80.49%. Moreover, the visual analysis of Grad_CAM rationalizes the results and makes them more convincing to pathologists. |
doi_str_mv | 10.1109/DDCLS55054.2022.9858449 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9858449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9858449</ieee_id><sourcerecordid>9858449</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-b853ed881001b612e72ee0b0c06dab8acf03e4f0048105ec35a636746ec1f3aa3</originalsourceid><addsrcrecordid>eNotkMtOAjEYhauJiYg8gQv7AoN_r9NxR4oICeJCWJNO-Qdq5kKmNca3d6KsTvKdk29xCHlkMGUMiqf53K4_lAIlpxw4nxZGGSmLK3LHtFay0LmS12TEc51nhdHslkxi_AQArpjQhRiRs7WzDaZnamsXY6i8S6FraVdR29Vdjz65mm6_mq6nyxBTd3bpNBTH4Ae-atwRI93F0B6po3azod8hnag9ubbFms5SwvbP94Z-YCE28Z7cVK6OOLnkmOwWL1u7zNbvrys7W2eBMZOy0iiBB2MYACs145hzRCjBgz640jhfgUBZAchhotAL5bTQudToWSWcE2Py8O8NiLg_96Fx_c_-cpD4BdfZW-k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Licheng ; Cao, Fakun ; Cao, Jing ; Zhu, Beibei ; Li, Sheng ; He, Xiongxiong</creator><creatorcontrib>Zhang, Licheng ; Cao, Fakun ; Cao, Jing ; Zhu, Beibei ; Li, Sheng ; He, Xiongxiong</creatorcontrib><description>Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Networks (CNN) have been frequently used for cancer classification tasks. Nevertheless, the potential global and channel relationships of the image may be overlooked and influence the representation capability of features.Also, the results are often not convincing for pathologists due to the un-interpretability. We propose a lightweight colorectal tumor classification network with only 10.02M parameters based on CNN and Channel Attention Mech-anisms(CCANet). The four classification tasks performed on the public dataset Warwick_qu reached an accuracy of 80.49%. Moreover, the visual analysis of Grad_CAM rationalizes the results and makes them more convincing to pathologists.</description><identifier>EISSN: 2767-9861</identifier><identifier>EISBN: 1665496754</identifier><identifier>EISBN: 9781665496759</identifier><identifier>DOI: 10.1109/DDCLS55054.2022.9858449</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel Attention Mechanisms ; Colorectal Tumor ; Control systems ; Convolutional neural networks ; Dimensionality reduction ; Histopathological Images Classification ; Imaging ; Interpretability ; Learning systems ; Lightweight ; Pathology ; Visualization</subject><ispartof>2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), 2022, p.723-727</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9858449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9858449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Licheng</creatorcontrib><creatorcontrib>Cao, Fakun</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><creatorcontrib>Zhu, Beibei</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>He, Xiongxiong</creatorcontrib><title>CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms</title><title>2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS)</title><addtitle>DDCLS</addtitle><description>Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Networks (CNN) have been frequently used for cancer classification tasks. Nevertheless, the potential global and channel relationships of the image may be overlooked and influence the representation capability of features.Also, the results are often not convincing for pathologists due to the un-interpretability. We propose a lightweight colorectal tumor classification network with only 10.02M parameters based on CNN and Channel Attention Mech-anisms(CCANet). The four classification tasks performed on the public dataset Warwick_qu reached an accuracy of 80.49%. Moreover, the visual analysis of Grad_CAM rationalizes the results and makes them more convincing to pathologists.</description><subject>Channel Attention Mechanisms</subject><subject>Colorectal Tumor</subject><subject>Control systems</subject><subject>Convolutional neural networks</subject><subject>Dimensionality reduction</subject><subject>Histopathological Images Classification</subject><subject>Imaging</subject><subject>Interpretability</subject><subject>Learning systems</subject><subject>Lightweight</subject><subject>Pathology</subject><subject>Visualization</subject><issn>2767-9861</issn><isbn>1665496754</isbn><isbn>9781665496759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOAjEYhauJiYg8gQv7AoN_r9NxR4oICeJCWJNO-Qdq5kKmNca3d6KsTvKdk29xCHlkMGUMiqf53K4_lAIlpxw4nxZGGSmLK3LHtFay0LmS12TEc51nhdHslkxi_AQArpjQhRiRs7WzDaZnamsXY6i8S6FraVdR29Vdjz65mm6_mq6nyxBTd3bpNBTH4Ae-atwRI93F0B6po3azod8hnag9ubbFms5SwvbP94Z-YCE28Z7cVK6OOLnkmOwWL1u7zNbvrys7W2eBMZOy0iiBB2MYACs145hzRCjBgz640jhfgUBZAchhotAL5bTQudToWSWcE2Py8O8NiLg_96Fx_c_-cpD4BdfZW-k</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Zhang, Licheng</creator><creator>Cao, Fakun</creator><creator>Cao, Jing</creator><creator>Zhu, Beibei</creator><creator>Li, Sheng</creator><creator>He, Xiongxiong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220803</creationdate><title>CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms</title><author>Zhang, Licheng ; Cao, Fakun ; Cao, Jing ; Zhu, Beibei ; Li, Sheng ; He, Xiongxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-b853ed881001b612e72ee0b0c06dab8acf03e4f0048105ec35a636746ec1f3aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Channel Attention Mechanisms</topic><topic>Colorectal Tumor</topic><topic>Control systems</topic><topic>Convolutional neural networks</topic><topic>Dimensionality reduction</topic><topic>Histopathological Images Classification</topic><topic>Imaging</topic><topic>Interpretability</topic><topic>Learning systems</topic><topic>Lightweight</topic><topic>Pathology</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Licheng</creatorcontrib><creatorcontrib>Cao, Fakun</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><creatorcontrib>Zhu, Beibei</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>He, Xiongxiong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Licheng</au><au>Cao, Fakun</au><au>Cao, Jing</au><au>Zhu, Beibei</au><au>Li, Sheng</au><au>He, Xiongxiong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms</atitle><btitle>2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS)</btitle><stitle>DDCLS</stitle><date>2022-08-03</date><risdate>2022</risdate><spage>723</spage><epage>727</epage><pages>723-727</pages><eissn>2767-9861</eissn><eisbn>1665496754</eisbn><eisbn>9781665496759</eisbn><abstract>Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Networks (CNN) have been frequently used for cancer classification tasks. Nevertheless, the potential global and channel relationships of the image may be overlooked and influence the representation capability of features.Also, the results are often not convincing for pathologists due to the un-interpretability. We propose a lightweight colorectal tumor classification network with only 10.02M parameters based on CNN and Channel Attention Mech-anisms(CCANet). The four classification tasks performed on the public dataset Warwick_qu reached an accuracy of 80.49%. Moreover, the visual analysis of Grad_CAM rationalizes the results and makes them more convincing to pathologists.</abstract><pub>IEEE</pub><doi>10.1109/DDCLS55054.2022.9858449</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2767-9861 |
ispartof | 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), 2022, p.723-727 |
issn | 2767-9861 |
language | eng |
recordid | cdi_ieee_primary_9858449 |
source | IEEE Xplore All Conference Series |
subjects | Channel Attention Mechanisms Colorectal Tumor Control systems Convolutional neural networks Dimensionality reduction Histopathological Images Classification Imaging Interpretability Learning systems Lightweight Pathology Visualization |
title | CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CCANet:%20Classifcation%20of%20Colorectal%20Tumor%20Histopathological%20Images%20Using%20a%20CNN%20with%20Channel%20Attention%20Mechanisms&rft.btitle=2022%20IEEE%2011th%20Data%20Driven%20Control%20and%20Learning%20Systems%20Conference%20(DDCLS)&rft.au=Zhang,%20Licheng&rft.date=2022-08-03&rft.spage=723&rft.epage=727&rft.pages=723-727&rft.eissn=2767-9861&rft_id=info:doi/10.1109/DDCLS55054.2022.9858449&rft.eisbn=1665496754&rft.eisbn_list=9781665496759&rft_dat=%3Cieee_CHZPO%3E9858449%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-b853ed881001b612e72ee0b0c06dab8acf03e4f0048105ec35a636746ec1f3aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9858449&rfr_iscdi=true |