Loading…

CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms

Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Net...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Licheng, Cao, Fakun, Cao, Jing, Zhu, Beibei, Li, Sheng, He, Xiongxiong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 727
container_issue
container_start_page 723
container_title
container_volume
creator Zhang, Licheng
Cao, Fakun
Cao, Jing
Zhu, Beibei
Li, Sheng
He, Xiongxiong
description Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Networks (CNN) have been frequently used for cancer classification tasks. Nevertheless, the potential global and channel relationships of the image may be overlooked and influence the representation capability of features.Also, the results are often not convincing for pathologists due to the un-interpretability. We propose a lightweight colorectal tumor classification network with only 10.02M parameters based on CNN and Channel Attention Mech-anisms(CCANet). The four classification tasks performed on the public dataset Warwick_qu reached an accuracy of 80.49%. Moreover, the visual analysis of Grad_CAM rationalizes the results and makes them more convincing to pathologists.
doi_str_mv 10.1109/DDCLS55054.2022.9858449
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9858449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9858449</ieee_id><sourcerecordid>9858449</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-b853ed881001b612e72ee0b0c06dab8acf03e4f0048105ec35a636746ec1f3aa3</originalsourceid><addsrcrecordid>eNotkMtOAjEYhauJiYg8gQv7AoN_r9NxR4oICeJCWJNO-Qdq5kKmNca3d6KsTvKdk29xCHlkMGUMiqf53K4_lAIlpxw4nxZGGSmLK3LHtFay0LmS12TEc51nhdHslkxi_AQArpjQhRiRs7WzDaZnamsXY6i8S6FraVdR29Vdjz65mm6_mq6nyxBTd3bpNBTH4Ae-atwRI93F0B6po3azod8hnag9ubbFms5SwvbP94Z-YCE28Z7cVK6OOLnkmOwWL1u7zNbvrys7W2eBMZOy0iiBB2MYACs145hzRCjBgz640jhfgUBZAchhotAL5bTQudToWSWcE2Py8O8NiLg_96Fx_c_-cpD4BdfZW-k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Licheng ; Cao, Fakun ; Cao, Jing ; Zhu, Beibei ; Li, Sheng ; He, Xiongxiong</creator><creatorcontrib>Zhang, Licheng ; Cao, Fakun ; Cao, Jing ; Zhu, Beibei ; Li, Sheng ; He, Xiongxiong</creatorcontrib><description>Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Networks (CNN) have been frequently used for cancer classification tasks. Nevertheless, the potential global and channel relationships of the image may be overlooked and influence the representation capability of features.Also, the results are often not convincing for pathologists due to the un-interpretability. We propose a lightweight colorectal tumor classification network with only 10.02M parameters based on CNN and Channel Attention Mech-anisms(CCANet). The four classification tasks performed on the public dataset Warwick_qu reached an accuracy of 80.49%. Moreover, the visual analysis of Grad_CAM rationalizes the results and makes them more convincing to pathologists.</description><identifier>EISSN: 2767-9861</identifier><identifier>EISBN: 1665496754</identifier><identifier>EISBN: 9781665496759</identifier><identifier>DOI: 10.1109/DDCLS55054.2022.9858449</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel Attention Mechanisms ; Colorectal Tumor ; Control systems ; Convolutional neural networks ; Dimensionality reduction ; Histopathological Images Classification ; Imaging ; Interpretability ; Learning systems ; Lightweight ; Pathology ; Visualization</subject><ispartof>2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), 2022, p.723-727</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9858449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9858449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Licheng</creatorcontrib><creatorcontrib>Cao, Fakun</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><creatorcontrib>Zhu, Beibei</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>He, Xiongxiong</creatorcontrib><title>CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms</title><title>2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS)</title><addtitle>DDCLS</addtitle><description>Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Networks (CNN) have been frequently used for cancer classification tasks. Nevertheless, the potential global and channel relationships of the image may be overlooked and influence the representation capability of features.Also, the results are often not convincing for pathologists due to the un-interpretability. We propose a lightweight colorectal tumor classification network with only 10.02M parameters based on CNN and Channel Attention Mech-anisms(CCANet). The four classification tasks performed on the public dataset Warwick_qu reached an accuracy of 80.49%. Moreover, the visual analysis of Grad_CAM rationalizes the results and makes them more convincing to pathologists.</description><subject>Channel Attention Mechanisms</subject><subject>Colorectal Tumor</subject><subject>Control systems</subject><subject>Convolutional neural networks</subject><subject>Dimensionality reduction</subject><subject>Histopathological Images Classification</subject><subject>Imaging</subject><subject>Interpretability</subject><subject>Learning systems</subject><subject>Lightweight</subject><subject>Pathology</subject><subject>Visualization</subject><issn>2767-9861</issn><isbn>1665496754</isbn><isbn>9781665496759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOAjEYhauJiYg8gQv7AoN_r9NxR4oICeJCWJNO-Qdq5kKmNca3d6KsTvKdk29xCHlkMGUMiqf53K4_lAIlpxw4nxZGGSmLK3LHtFay0LmS12TEc51nhdHslkxi_AQArpjQhRiRs7WzDaZnamsXY6i8S6FraVdR29Vdjz65mm6_mq6nyxBTd3bpNBTH4Ae-atwRI93F0B6po3azod8hnag9ubbFms5SwvbP94Z-YCE28Z7cVK6OOLnkmOwWL1u7zNbvrys7W2eBMZOy0iiBB2MYACs145hzRCjBgz640jhfgUBZAchhotAL5bTQudToWSWcE2Py8O8NiLg_96Fx_c_-cpD4BdfZW-k</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Zhang, Licheng</creator><creator>Cao, Fakun</creator><creator>Cao, Jing</creator><creator>Zhu, Beibei</creator><creator>Li, Sheng</creator><creator>He, Xiongxiong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220803</creationdate><title>CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms</title><author>Zhang, Licheng ; Cao, Fakun ; Cao, Jing ; Zhu, Beibei ; Li, Sheng ; He, Xiongxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-b853ed881001b612e72ee0b0c06dab8acf03e4f0048105ec35a636746ec1f3aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Channel Attention Mechanisms</topic><topic>Colorectal Tumor</topic><topic>Control systems</topic><topic>Convolutional neural networks</topic><topic>Dimensionality reduction</topic><topic>Histopathological Images Classification</topic><topic>Imaging</topic><topic>Interpretability</topic><topic>Learning systems</topic><topic>Lightweight</topic><topic>Pathology</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Licheng</creatorcontrib><creatorcontrib>Cao, Fakun</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><creatorcontrib>Zhu, Beibei</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>He, Xiongxiong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Licheng</au><au>Cao, Fakun</au><au>Cao, Jing</au><au>Zhu, Beibei</au><au>Li, Sheng</au><au>He, Xiongxiong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms</atitle><btitle>2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS)</btitle><stitle>DDCLS</stitle><date>2022-08-03</date><risdate>2022</risdate><spage>723</spage><epage>727</epage><pages>723-727</pages><eissn>2767-9861</eissn><eisbn>1665496754</eisbn><eisbn>9781665496759</eisbn><abstract>Histopathological imaging analysis of colorectal polyps is the gold standard for tumor diagnosis. Nevertheless, the diagnostic process of organizing images is time-consuming and laborious. So a fast and effective computer automatic analysis method is needed. In recent years, Convolutional Neural Networks (CNN) have been frequently used for cancer classification tasks. Nevertheless, the potential global and channel relationships of the image may be overlooked and influence the representation capability of features.Also, the results are often not convincing for pathologists due to the un-interpretability. We propose a lightweight colorectal tumor classification network with only 10.02M parameters based on CNN and Channel Attention Mech-anisms(CCANet). The four classification tasks performed on the public dataset Warwick_qu reached an accuracy of 80.49%. Moreover, the visual analysis of Grad_CAM rationalizes the results and makes them more convincing to pathologists.</abstract><pub>IEEE</pub><doi>10.1109/DDCLS55054.2022.9858449</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2767-9861
ispartof 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), 2022, p.723-727
issn 2767-9861
language eng
recordid cdi_ieee_primary_9858449
source IEEE Xplore All Conference Series
subjects Channel Attention Mechanisms
Colorectal Tumor
Control systems
Convolutional neural networks
Dimensionality reduction
Histopathological Images Classification
Imaging
Interpretability
Learning systems
Lightweight
Pathology
Visualization
title CCANet: Classifcation of Colorectal Tumor Histopathological Images Using a CNN with Channel Attention Mechanisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CCANet:%20Classifcation%20of%20Colorectal%20Tumor%20Histopathological%20Images%20Using%20a%20CNN%20with%20Channel%20Attention%20Mechanisms&rft.btitle=2022%20IEEE%2011th%20Data%20Driven%20Control%20and%20Learning%20Systems%20Conference%20(DDCLS)&rft.au=Zhang,%20Licheng&rft.date=2022-08-03&rft.spage=723&rft.epage=727&rft.pages=723-727&rft.eissn=2767-9861&rft_id=info:doi/10.1109/DDCLS55054.2022.9858449&rft.eisbn=1665496754&rft.eisbn_list=9781665496759&rft_dat=%3Cieee_CHZPO%3E9858449%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-b853ed881001b612e72ee0b0c06dab8acf03e4f0048105ec35a636746ec1f3aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9858449&rfr_iscdi=true