Loading…

Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell

Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2022-10, Vol.69 (10), p.5618-5623
Main Authors: Sadhukhan, Sourav, Acharya, Shiladitya, Panda, Tamalika, Mandal, Nabin Chandra, Bose, Sukanta, Nandi, Anupam, Das, Gourab, Chakraborty, Susanta, Maity, Santanu, Chaudhuri, Partha, Saha, Hiranmay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3
cites cdi_FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3
container_end_page 5623
container_issue 10
container_start_page 5618
container_title IEEE transactions on electron devices
container_volume 69
creator Sadhukhan, Sourav
Acharya, Shiladitya
Panda, Tamalika
Mandal, Nabin Chandra
Bose, Sukanta
Nandi, Anupam
Das, Gourab
Chakraborty, Susanta
Maity, Santanu
Chaudhuri, Partha
Saha, Hiranmay
description Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its demonstrated higher efficiency than either Al-BSF or PERC type solar cell. Numerical analysis using 3-D Sentaurus Technology Computer Aided Design (3-D-TCAD) software leads to the enhancement of the efficiency of the p- and n-type TOPCon solar cells by optimizing the size, nature, and number density of pinholes in the oxide layer; thickness of the oxide layer with and without pinholes and B doping concentration in the hole selective p+ poly-Si layer at the rear. Effects of both types of pinholes, either completely through (physical contact) or partially through (localized thinner oxide), are studied on cell performance. Simulation results show that pinholes in tunnel oxide have an advantage in lowering of series resistance and improvement of fill factor. To achieve optimum performance, the size, nature, and number density of pinholes and thickness of the oxide layer should be optimized. Considering both types of pinholes, the efficiency achieved is 25.3% for p-TOPCon and 26% for n-TOPCon. Also, the outputs of simulated p-TOPCon are compared with simulated p-PERC solar cell. The analysis shows that TOPCon solar cell on p-type wafer has significant ability to be adopted for industrial production.
doi_str_mv 10.1109/TED.2022.3196327
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9858672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9858672</ieee_id><sourcerecordid>2717159361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3</originalsourceid><addsrcrecordid>eNo9kU9PGzEQxa2qSE2hdyQulrjQwwaPvV6vjyihf6SoiUo4r8x6LIyWNdjeqvksfNkaEnqaGc1v3hvpEXIKbA7A9OX2ejnnjPO5AN0Irj6QGUipKt3UzUcyYwzaSotWfCKfU3ooY1PXfEZelpiNH9DSmzzZHQ0jzfdIf4cBaXD0l8lTRGpGS5c-5ejvpuwLU1YbP94XKr0t13-9RboyO4zvEhuMLsRHM_ZvSttpHHE4gBuTkv9jcrFdhDGbPtOL7XpT-q_0Jgwm0gUOwwk5cmZI-OVQj8ntt-vt4ke1Wn__ubhaVT3XkCuQjjnZG0DkslFcih6tbWvDnHA1SFuzvpaoJOg7ax3W0oFkoE2PXCnlxDE53-s-xfA8YcrdQ5jiWCw7rkCB1KKBQrE91ceQUkTXPUX_aOKuA9a9RtCVCLrXCLpDBOXkbH_iEfE_rlvZljfFP8AFgtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717159361</pqid></control><display><type>article</type><title>Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sadhukhan, Sourav ; Acharya, Shiladitya ; Panda, Tamalika ; Mandal, Nabin Chandra ; Bose, Sukanta ; Nandi, Anupam ; Das, Gourab ; Chakraborty, Susanta ; Maity, Santanu ; Chaudhuri, Partha ; Saha, Hiranmay</creator><creatorcontrib>Sadhukhan, Sourav ; Acharya, Shiladitya ; Panda, Tamalika ; Mandal, Nabin Chandra ; Bose, Sukanta ; Nandi, Anupam ; Das, Gourab ; Chakraborty, Susanta ; Maity, Santanu ; Chaudhuri, Partha ; Saha, Hiranmay</creatorcontrib><description>Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its demonstrated higher efficiency than either Al-BSF or PERC type solar cell. Numerical analysis using 3-D Sentaurus Technology Computer Aided Design (3-D-TCAD) software leads to the enhancement of the efficiency of the p- and n-type TOPCon solar cells by optimizing the size, nature, and number density of pinholes in the oxide layer; thickness of the oxide layer with and without pinholes and B doping concentration in the hole selective p+ poly-Si layer at the rear. Effects of both types of pinholes, either completely through (physical contact) or partially through (localized thinner oxide), are studied on cell performance. Simulation results show that pinholes in tunnel oxide have an advantage in lowering of series resistance and improvement of fill factor. To achieve optimum performance, the size, nature, and number density of pinholes and thickness of the oxide layer should be optimized. Considering both types of pinholes, the efficiency achieved is 25.3% for p-TOPCon and 26% for n-TOPCon. Also, the outputs of simulated p-TOPCon are compared with simulated p-PERC solar cell. The analysis shows that TOPCon solar cell on p-type wafer has significant ability to be adopted for industrial production.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3196327</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; CAD ; Computational modeling ; Computer aided design ; Density ; Doping ; Efficiency ; Emitters ; Numerical analysis ; Optimization ; Passivating contact ; Photovoltaic cells ; pinhole density ; pinhole nature ; pinhole size ; Pinholes ; Pins ; poly-Si ; Polysilicon ; Resistance ; Silicon ; Silicon wafers ; Simulation ; Solar cells ; Thickness ; tunnel oxide ; tunnel oxide passivated contact (TOPCon) solar cell ; Tunneling ; Tunnels ; Wafers</subject><ispartof>IEEE transactions on electron devices, 2022-10, Vol.69 (10), p.5618-5623</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3</citedby><cites>FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3</cites><orcidid>0000-0001-6220-8163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9858672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids></links><search><creatorcontrib>Sadhukhan, Sourav</creatorcontrib><creatorcontrib>Acharya, Shiladitya</creatorcontrib><creatorcontrib>Panda, Tamalika</creatorcontrib><creatorcontrib>Mandal, Nabin Chandra</creatorcontrib><creatorcontrib>Bose, Sukanta</creatorcontrib><creatorcontrib>Nandi, Anupam</creatorcontrib><creatorcontrib>Das, Gourab</creatorcontrib><creatorcontrib>Chakraborty, Susanta</creatorcontrib><creatorcontrib>Maity, Santanu</creatorcontrib><creatorcontrib>Chaudhuri, Partha</creatorcontrib><creatorcontrib>Saha, Hiranmay</creatorcontrib><title>Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its demonstrated higher efficiency than either Al-BSF or PERC type solar cell. Numerical analysis using 3-D Sentaurus Technology Computer Aided Design (3-D-TCAD) software leads to the enhancement of the efficiency of the p- and n-type TOPCon solar cells by optimizing the size, nature, and number density of pinholes in the oxide layer; thickness of the oxide layer with and without pinholes and B doping concentration in the hole selective p+ poly-Si layer at the rear. Effects of both types of pinholes, either completely through (physical contact) or partially through (localized thinner oxide), are studied on cell performance. Simulation results show that pinholes in tunnel oxide have an advantage in lowering of series resistance and improvement of fill factor. To achieve optimum performance, the size, nature, and number density of pinholes and thickness of the oxide layer should be optimized. Considering both types of pinholes, the efficiency achieved is 25.3% for p-TOPCon and 26% for n-TOPCon. Also, the outputs of simulated p-TOPCon are compared with simulated p-PERC solar cell. The analysis shows that TOPCon solar cell on p-type wafer has significant ability to be adopted for industrial production.</description><subject>Aluminum</subject><subject>CAD</subject><subject>Computational modeling</subject><subject>Computer aided design</subject><subject>Density</subject><subject>Doping</subject><subject>Efficiency</subject><subject>Emitters</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Passivating contact</subject><subject>Photovoltaic cells</subject><subject>pinhole density</subject><subject>pinhole nature</subject><subject>pinhole size</subject><subject>Pinholes</subject><subject>Pins</subject><subject>poly-Si</subject><subject>Polysilicon</subject><subject>Resistance</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>tunnel oxide</subject><subject>tunnel oxide passivated contact (TOPCon) solar cell</subject><subject>Tunneling</subject><subject>Tunnels</subject><subject>Wafers</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kU9PGzEQxa2qSE2hdyQulrjQwwaPvV6vjyihf6SoiUo4r8x6LIyWNdjeqvksfNkaEnqaGc1v3hvpEXIKbA7A9OX2ejnnjPO5AN0Irj6QGUipKt3UzUcyYwzaSotWfCKfU3ooY1PXfEZelpiNH9DSmzzZHQ0jzfdIf4cBaXD0l8lTRGpGS5c-5ejvpuwLU1YbP94XKr0t13-9RboyO4zvEhuMLsRHM_ZvSttpHHE4gBuTkv9jcrFdhDGbPtOL7XpT-q_0Jgwm0gUOwwk5cmZI-OVQj8ntt-vt4ke1Wn__ubhaVT3XkCuQjjnZG0DkslFcih6tbWvDnHA1SFuzvpaoJOg7ax3W0oFkoE2PXCnlxDE53-s-xfA8YcrdQ5jiWCw7rkCB1KKBQrE91ceQUkTXPUX_aOKuA9a9RtCVCLrXCLpDBOXkbH_iEfE_rlvZljfFP8AFgtc</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Sadhukhan, Sourav</creator><creator>Acharya, Shiladitya</creator><creator>Panda, Tamalika</creator><creator>Mandal, Nabin Chandra</creator><creator>Bose, Sukanta</creator><creator>Nandi, Anupam</creator><creator>Das, Gourab</creator><creator>Chakraborty, Susanta</creator><creator>Maity, Santanu</creator><creator>Chaudhuri, Partha</creator><creator>Saha, Hiranmay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6220-8163</orcidid></search><sort><creationdate>20221001</creationdate><title>Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell</title><author>Sadhukhan, Sourav ; Acharya, Shiladitya ; Panda, Tamalika ; Mandal, Nabin Chandra ; Bose, Sukanta ; Nandi, Anupam ; Das, Gourab ; Chakraborty, Susanta ; Maity, Santanu ; Chaudhuri, Partha ; Saha, Hiranmay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>CAD</topic><topic>Computational modeling</topic><topic>Computer aided design</topic><topic>Density</topic><topic>Doping</topic><topic>Efficiency</topic><topic>Emitters</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Passivating contact</topic><topic>Photovoltaic cells</topic><topic>pinhole density</topic><topic>pinhole nature</topic><topic>pinhole size</topic><topic>Pinholes</topic><topic>Pins</topic><topic>poly-Si</topic><topic>Polysilicon</topic><topic>Resistance</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>tunnel oxide</topic><topic>tunnel oxide passivated contact (TOPCon) solar cell</topic><topic>Tunneling</topic><topic>Tunnels</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadhukhan, Sourav</creatorcontrib><creatorcontrib>Acharya, Shiladitya</creatorcontrib><creatorcontrib>Panda, Tamalika</creatorcontrib><creatorcontrib>Mandal, Nabin Chandra</creatorcontrib><creatorcontrib>Bose, Sukanta</creatorcontrib><creatorcontrib>Nandi, Anupam</creatorcontrib><creatorcontrib>Das, Gourab</creatorcontrib><creatorcontrib>Chakraborty, Susanta</creatorcontrib><creatorcontrib>Maity, Santanu</creatorcontrib><creatorcontrib>Chaudhuri, Partha</creatorcontrib><creatorcontrib>Saha, Hiranmay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadhukhan, Sourav</au><au>Acharya, Shiladitya</au><au>Panda, Tamalika</au><au>Mandal, Nabin Chandra</au><au>Bose, Sukanta</au><au>Nandi, Anupam</au><au>Das, Gourab</au><au>Chakraborty, Susanta</au><au>Maity, Santanu</au><au>Chaudhuri, Partha</au><au>Saha, Hiranmay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>69</volume><issue>10</issue><spage>5618</spage><epage>5623</epage><pages>5618-5623</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its demonstrated higher efficiency than either Al-BSF or PERC type solar cell. Numerical analysis using 3-D Sentaurus Technology Computer Aided Design (3-D-TCAD) software leads to the enhancement of the efficiency of the p- and n-type TOPCon solar cells by optimizing the size, nature, and number density of pinholes in the oxide layer; thickness of the oxide layer with and without pinholes and B doping concentration in the hole selective p+ poly-Si layer at the rear. Effects of both types of pinholes, either completely through (physical contact) or partially through (localized thinner oxide), are studied on cell performance. Simulation results show that pinholes in tunnel oxide have an advantage in lowering of series resistance and improvement of fill factor. To achieve optimum performance, the size, nature, and number density of pinholes and thickness of the oxide layer should be optimized. Considering both types of pinholes, the efficiency achieved is 25.3% for p-TOPCon and 26% for n-TOPCon. Also, the outputs of simulated p-TOPCon are compared with simulated p-PERC solar cell. The analysis shows that TOPCon solar cell on p-type wafer has significant ability to be adopted for industrial production.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3196327</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6220-8163</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-10, Vol.69 (10), p.5618-5623
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9858672
source IEEE Electronic Library (IEL) Journals
subjects Aluminum
CAD
Computational modeling
Computer aided design
Density
Doping
Efficiency
Emitters
Numerical analysis
Optimization
Passivating contact
Photovoltaic cells
pinhole density
pinhole nature
pinhole size
Pinholes
Pins
poly-Si
Polysilicon
Resistance
Silicon
Silicon wafers
Simulation
Solar cells
Thickness
tunnel oxide
tunnel oxide passivated contact (TOPCon) solar cell
Tunneling
Tunnels
Wafers
title Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Study%20on%20the%20Role%20of%20Nature%20and%20Distribution%20of%20Pinholes%20and%20Oxide%20Layer%20on%20the%20Performance%20of%20Tunnel%20Oxide%20Passivated%20Contact%20(TOPCon)%20Solar%20Cell&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sadhukhan,%20Sourav&rft.date=2022-10-01&rft.volume=69&rft.issue=10&rft.spage=5618&rft.epage=5623&rft.pages=5618-5623&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3196327&rft_dat=%3Cproquest_ieee_%3E2717159361%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2717159361&rft_id=info:pmid/&rft_ieee_id=9858672&rfr_iscdi=true