Loading…
Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell
Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its de...
Saved in:
Published in: | IEEE transactions on electron devices 2022-10, Vol.69 (10), p.5618-5623 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3 |
container_end_page | 5623 |
container_issue | 10 |
container_start_page | 5618 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Sadhukhan, Sourav Acharya, Shiladitya Panda, Tamalika Mandal, Nabin Chandra Bose, Sukanta Nandi, Anupam Das, Gourab Chakraborty, Susanta Maity, Santanu Chaudhuri, Partha Saha, Hiranmay |
description | Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its demonstrated higher efficiency than either Al-BSF or PERC type solar cell. Numerical analysis using 3-D Sentaurus Technology Computer Aided Design (3-D-TCAD) software leads to the enhancement of the efficiency of the p- and n-type TOPCon solar cells by optimizing the size, nature, and number density of pinholes in the oxide layer; thickness of the oxide layer with and without pinholes and B doping concentration in the hole selective p+ poly-Si layer at the rear. Effects of both types of pinholes, either completely through (physical contact) or partially through (localized thinner oxide), are studied on cell performance. Simulation results show that pinholes in tunnel oxide have an advantage in lowering of series resistance and improvement of fill factor. To achieve optimum performance, the size, nature, and number density of pinholes and thickness of the oxide layer should be optimized. Considering both types of pinholes, the efficiency achieved is 25.3% for p-TOPCon and 26% for n-TOPCon. Also, the outputs of simulated p-TOPCon are compared with simulated p-PERC solar cell. The analysis shows that TOPCon solar cell on p-type wafer has significant ability to be adopted for industrial production. |
doi_str_mv | 10.1109/TED.2022.3196327 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9858672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9858672</ieee_id><sourcerecordid>2717159361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3</originalsourceid><addsrcrecordid>eNo9kU9PGzEQxa2qSE2hdyQulrjQwwaPvV6vjyihf6SoiUo4r8x6LIyWNdjeqvksfNkaEnqaGc1v3hvpEXIKbA7A9OX2ejnnjPO5AN0Irj6QGUipKt3UzUcyYwzaSotWfCKfU3ooY1PXfEZelpiNH9DSmzzZHQ0jzfdIf4cBaXD0l8lTRGpGS5c-5ejvpuwLU1YbP94XKr0t13-9RboyO4zvEhuMLsRHM_ZvSttpHHE4gBuTkv9jcrFdhDGbPtOL7XpT-q_0Jgwm0gUOwwk5cmZI-OVQj8ntt-vt4ke1Wn__ubhaVT3XkCuQjjnZG0DkslFcih6tbWvDnHA1SFuzvpaoJOg7ax3W0oFkoE2PXCnlxDE53-s-xfA8YcrdQ5jiWCw7rkCB1KKBQrE91ceQUkTXPUX_aOKuA9a9RtCVCLrXCLpDBOXkbH_iEfE_rlvZljfFP8AFgtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717159361</pqid></control><display><type>article</type><title>Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sadhukhan, Sourav ; Acharya, Shiladitya ; Panda, Tamalika ; Mandal, Nabin Chandra ; Bose, Sukanta ; Nandi, Anupam ; Das, Gourab ; Chakraborty, Susanta ; Maity, Santanu ; Chaudhuri, Partha ; Saha, Hiranmay</creator><creatorcontrib>Sadhukhan, Sourav ; Acharya, Shiladitya ; Panda, Tamalika ; Mandal, Nabin Chandra ; Bose, Sukanta ; Nandi, Anupam ; Das, Gourab ; Chakraborty, Susanta ; Maity, Santanu ; Chaudhuri, Partha ; Saha, Hiranmay</creatorcontrib><description>Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its demonstrated higher efficiency than either Al-BSF or PERC type solar cell. Numerical analysis using 3-D Sentaurus Technology Computer Aided Design (3-D-TCAD) software leads to the enhancement of the efficiency of the p- and n-type TOPCon solar cells by optimizing the size, nature, and number density of pinholes in the oxide layer; thickness of the oxide layer with and without pinholes and B doping concentration in the hole selective p+ poly-Si layer at the rear. Effects of both types of pinholes, either completely through (physical contact) or partially through (localized thinner oxide), are studied on cell performance. Simulation results show that pinholes in tunnel oxide have an advantage in lowering of series resistance and improvement of fill factor. To achieve optimum performance, the size, nature, and number density of pinholes and thickness of the oxide layer should be optimized. Considering both types of pinholes, the efficiency achieved is 25.3% for p-TOPCon and 26% for n-TOPCon. Also, the outputs of simulated p-TOPCon are compared with simulated p-PERC solar cell. The analysis shows that TOPCon solar cell on p-type wafer has significant ability to be adopted for industrial production.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3196327</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; CAD ; Computational modeling ; Computer aided design ; Density ; Doping ; Efficiency ; Emitters ; Numerical analysis ; Optimization ; Passivating contact ; Photovoltaic cells ; pinhole density ; pinhole nature ; pinhole size ; Pinholes ; Pins ; poly-Si ; Polysilicon ; Resistance ; Silicon ; Silicon wafers ; Simulation ; Solar cells ; Thickness ; tunnel oxide ; tunnel oxide passivated contact (TOPCon) solar cell ; Tunneling ; Tunnels ; Wafers</subject><ispartof>IEEE transactions on electron devices, 2022-10, Vol.69 (10), p.5618-5623</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3</citedby><cites>FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3</cites><orcidid>0000-0001-6220-8163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9858672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids></links><search><creatorcontrib>Sadhukhan, Sourav</creatorcontrib><creatorcontrib>Acharya, Shiladitya</creatorcontrib><creatorcontrib>Panda, Tamalika</creatorcontrib><creatorcontrib>Mandal, Nabin Chandra</creatorcontrib><creatorcontrib>Bose, Sukanta</creatorcontrib><creatorcontrib>Nandi, Anupam</creatorcontrib><creatorcontrib>Das, Gourab</creatorcontrib><creatorcontrib>Chakraborty, Susanta</creatorcontrib><creatorcontrib>Maity, Santanu</creatorcontrib><creatorcontrib>Chaudhuri, Partha</creatorcontrib><creatorcontrib>Saha, Hiranmay</creatorcontrib><title>Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its demonstrated higher efficiency than either Al-BSF or PERC type solar cell. Numerical analysis using 3-D Sentaurus Technology Computer Aided Design (3-D-TCAD) software leads to the enhancement of the efficiency of the p- and n-type TOPCon solar cells by optimizing the size, nature, and number density of pinholes in the oxide layer; thickness of the oxide layer with and without pinholes and B doping concentration in the hole selective p+ poly-Si layer at the rear. Effects of both types of pinholes, either completely through (physical contact) or partially through (localized thinner oxide), are studied on cell performance. Simulation results show that pinholes in tunnel oxide have an advantage in lowering of series resistance and improvement of fill factor. To achieve optimum performance, the size, nature, and number density of pinholes and thickness of the oxide layer should be optimized. Considering both types of pinholes, the efficiency achieved is 25.3% for p-TOPCon and 26% for n-TOPCon. Also, the outputs of simulated p-TOPCon are compared with simulated p-PERC solar cell. The analysis shows that TOPCon solar cell on p-type wafer has significant ability to be adopted for industrial production.</description><subject>Aluminum</subject><subject>CAD</subject><subject>Computational modeling</subject><subject>Computer aided design</subject><subject>Density</subject><subject>Doping</subject><subject>Efficiency</subject><subject>Emitters</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Passivating contact</subject><subject>Photovoltaic cells</subject><subject>pinhole density</subject><subject>pinhole nature</subject><subject>pinhole size</subject><subject>Pinholes</subject><subject>Pins</subject><subject>poly-Si</subject><subject>Polysilicon</subject><subject>Resistance</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>tunnel oxide</subject><subject>tunnel oxide passivated contact (TOPCon) solar cell</subject><subject>Tunneling</subject><subject>Tunnels</subject><subject>Wafers</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kU9PGzEQxa2qSE2hdyQulrjQwwaPvV6vjyihf6SoiUo4r8x6LIyWNdjeqvksfNkaEnqaGc1v3hvpEXIKbA7A9OX2ejnnjPO5AN0Irj6QGUipKt3UzUcyYwzaSotWfCKfU3ooY1PXfEZelpiNH9DSmzzZHQ0jzfdIf4cBaXD0l8lTRGpGS5c-5ejvpuwLU1YbP94XKr0t13-9RboyO4zvEhuMLsRHM_ZvSttpHHE4gBuTkv9jcrFdhDGbPtOL7XpT-q_0Jgwm0gUOwwk5cmZI-OVQj8ntt-vt4ke1Wn__ubhaVT3XkCuQjjnZG0DkslFcih6tbWvDnHA1SFuzvpaoJOg7ax3W0oFkoE2PXCnlxDE53-s-xfA8YcrdQ5jiWCw7rkCB1KKBQrE91ceQUkTXPUX_aOKuA9a9RtCVCLrXCLpDBOXkbH_iEfE_rlvZljfFP8AFgtc</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Sadhukhan, Sourav</creator><creator>Acharya, Shiladitya</creator><creator>Panda, Tamalika</creator><creator>Mandal, Nabin Chandra</creator><creator>Bose, Sukanta</creator><creator>Nandi, Anupam</creator><creator>Das, Gourab</creator><creator>Chakraborty, Susanta</creator><creator>Maity, Santanu</creator><creator>Chaudhuri, Partha</creator><creator>Saha, Hiranmay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6220-8163</orcidid></search><sort><creationdate>20221001</creationdate><title>Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell</title><author>Sadhukhan, Sourav ; Acharya, Shiladitya ; Panda, Tamalika ; Mandal, Nabin Chandra ; Bose, Sukanta ; Nandi, Anupam ; Das, Gourab ; Chakraborty, Susanta ; Maity, Santanu ; Chaudhuri, Partha ; Saha, Hiranmay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>CAD</topic><topic>Computational modeling</topic><topic>Computer aided design</topic><topic>Density</topic><topic>Doping</topic><topic>Efficiency</topic><topic>Emitters</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Passivating contact</topic><topic>Photovoltaic cells</topic><topic>pinhole density</topic><topic>pinhole nature</topic><topic>pinhole size</topic><topic>Pinholes</topic><topic>Pins</topic><topic>poly-Si</topic><topic>Polysilicon</topic><topic>Resistance</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>tunnel oxide</topic><topic>tunnel oxide passivated contact (TOPCon) solar cell</topic><topic>Tunneling</topic><topic>Tunnels</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadhukhan, Sourav</creatorcontrib><creatorcontrib>Acharya, Shiladitya</creatorcontrib><creatorcontrib>Panda, Tamalika</creatorcontrib><creatorcontrib>Mandal, Nabin Chandra</creatorcontrib><creatorcontrib>Bose, Sukanta</creatorcontrib><creatorcontrib>Nandi, Anupam</creatorcontrib><creatorcontrib>Das, Gourab</creatorcontrib><creatorcontrib>Chakraborty, Susanta</creatorcontrib><creatorcontrib>Maity, Santanu</creatorcontrib><creatorcontrib>Chaudhuri, Partha</creatorcontrib><creatorcontrib>Saha, Hiranmay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadhukhan, Sourav</au><au>Acharya, Shiladitya</au><au>Panda, Tamalika</au><au>Mandal, Nabin Chandra</au><au>Bose, Sukanta</au><au>Nandi, Anupam</au><au>Das, Gourab</au><au>Chakraborty, Susanta</au><au>Maity, Santanu</au><au>Chaudhuri, Partha</au><au>Saha, Hiranmay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>69</volume><issue>10</issue><spage>5618</spage><epage>5623</epage><pages>5618-5623</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Industrial silicon solar cells are now mostly based on aluminum back surface field (Al-BSF) or passivated emitter rear cell (PERC) technologies on p-type crystalline silicon wafers. Recently tunnel oxide passivated contact (TOPCon) solar cell on p-type Si wafers has attracted attention due to its demonstrated higher efficiency than either Al-BSF or PERC type solar cell. Numerical analysis using 3-D Sentaurus Technology Computer Aided Design (3-D-TCAD) software leads to the enhancement of the efficiency of the p- and n-type TOPCon solar cells by optimizing the size, nature, and number density of pinholes in the oxide layer; thickness of the oxide layer with and without pinholes and B doping concentration in the hole selective p+ poly-Si layer at the rear. Effects of both types of pinholes, either completely through (physical contact) or partially through (localized thinner oxide), are studied on cell performance. Simulation results show that pinholes in tunnel oxide have an advantage in lowering of series resistance and improvement of fill factor. To achieve optimum performance, the size, nature, and number density of pinholes and thickness of the oxide layer should be optimized. Considering both types of pinholes, the efficiency achieved is 25.3% for p-TOPCon and 26% for n-TOPCon. Also, the outputs of simulated p-TOPCon are compared with simulated p-PERC solar cell. The analysis shows that TOPCon solar cell on p-type wafer has significant ability to be adopted for industrial production.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3196327</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6220-8163</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-10, Vol.69 (10), p.5618-5623 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_9858672 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aluminum CAD Computational modeling Computer aided design Density Doping Efficiency Emitters Numerical analysis Optimization Passivating contact Photovoltaic cells pinhole density pinhole nature pinhole size Pinholes Pins poly-Si Polysilicon Resistance Silicon Silicon wafers Simulation Solar cells Thickness tunnel oxide tunnel oxide passivated contact (TOPCon) solar cell Tunneling Tunnels Wafers |
title | Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Study%20on%20the%20Role%20of%20Nature%20and%20Distribution%20of%20Pinholes%20and%20Oxide%20Layer%20on%20the%20Performance%20of%20Tunnel%20Oxide%20Passivated%20Contact%20(TOPCon)%20Solar%20Cell&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sadhukhan,%20Sourav&rft.date=2022-10-01&rft.volume=69&rft.issue=10&rft.spage=5618&rft.epage=5623&rft.pages=5618-5623&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3196327&rft_dat=%3Cproquest_ieee_%3E2717159361%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-15f0f5ca1ee2567253cedd84a0f3f415d40c45e7519bddfe45f15019ace2777f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2717159361&rft_id=info:pmid/&rft_ieee_id=9858672&rfr_iscdi=true |