Loading…
Localizability Estimation based on Occupancy Grid Maps
Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to es...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 373 |
container_issue | |
container_start_page | 368 |
container_title | |
container_volume | |
creator | Kondo, Maiku Hoshi, Masahiko Hara, Yoshitaka Nakamura, Sousuke |
description | Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to estimate localizability, this paper proposes a method using local map correlation. Our method represents the localizability using a covariance matrix of a Gaussian distribution, not just a scalar value. The simulation experiment results showed that the uncertainty of localizability increased at locations where degeneration is likely to occur, suggesting that localizability could be estimated appropriately. |
doi_str_mv | 10.1109/AIM52237.2022.9863325 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9863325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9863325</ieee_id><sourcerecordid>9863325</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-29925c756b2086d561327c2ca0a273ebbfa0c383eaff97abf83c1e4207d2688b3</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsLR5AhHyAol37s38LUuptZDSja7LnckERmIbkriIT2_Frs7ZfIfvCPEsoZQS3Mt6f1CIZEoExNJZTYTqTmTOWKm1qiSBre7FAqVyhUalHkU2jp8AIMH-kQuh60vgLv2wT12a5nw7TumLp3Q5557H2OTXcgzhu-dzmPPdkJr8wP24Eg8td2PMbrkUH6_b981bUR93-826LpIkmgp0DlUwSnsEqxulJaEJGBgYDUXvW4ZAliK3rTPsW0tBxgrBNKit9bQUT_-7KcZ46oer2zCfbk_pF8AsRuE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Localizability Estimation based on Occupancy Grid Maps</title><source>IEEE Xplore All Conference Series</source><creator>Kondo, Maiku ; Hoshi, Masahiko ; Hara, Yoshitaka ; Nakamura, Sousuke</creator><creatorcontrib>Kondo, Maiku ; Hoshi, Masahiko ; Hara, Yoshitaka ; Nakamura, Sousuke</creatorcontrib><description>Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to estimate localizability, this paper proposes a method using local map correlation. Our method represents the localizability using a covariance matrix of a Gaussian distribution, not just a scalar value. The simulation experiment results showed that the uncertainty of localizability increased at locations where degeneration is likely to occur, suggesting that localizability could be estimated appropriately.</description><identifier>EISSN: 2159-6255</identifier><identifier>EISBN: 9781665413084</identifier><identifier>EISBN: 1665413085</identifier><identifier>DOI: 10.1109/AIM52237.2022.9863325</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Correlation ; Estimation ; Location awareness ; Mechatronics ; Simultaneous localization and mapping ; Uncertainty</subject><ispartof>2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2022, p.368-373</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9863325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9863325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kondo, Maiku</creatorcontrib><creatorcontrib>Hoshi, Masahiko</creatorcontrib><creatorcontrib>Hara, Yoshitaka</creatorcontrib><creatorcontrib>Nakamura, Sousuke</creatorcontrib><title>Localizability Estimation based on Occupancy Grid Maps</title><title>2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)</title><addtitle>AIM</addtitle><description>Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to estimate localizability, this paper proposes a method using local map correlation. Our method represents the localizability using a covariance matrix of a Gaussian distribution, not just a scalar value. The simulation experiment results showed that the uncertainty of localizability increased at locations where degeneration is likely to occur, suggesting that localizability could be estimated appropriately.</description><subject>Computational modeling</subject><subject>Correlation</subject><subject>Estimation</subject><subject>Location awareness</subject><subject>Mechatronics</subject><subject>Simultaneous localization and mapping</subject><subject>Uncertainty</subject><issn>2159-6255</issn><isbn>9781665413084</isbn><isbn>1665413085</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsLR5AhHyAol37s38LUuptZDSja7LnckERmIbkriIT2_Frs7ZfIfvCPEsoZQS3Mt6f1CIZEoExNJZTYTqTmTOWKm1qiSBre7FAqVyhUalHkU2jp8AIMH-kQuh60vgLv2wT12a5nw7TumLp3Q5557H2OTXcgzhu-dzmPPdkJr8wP24Eg8td2PMbrkUH6_b981bUR93-826LpIkmgp0DlUwSnsEqxulJaEJGBgYDUXvW4ZAliK3rTPsW0tBxgrBNKit9bQUT_-7KcZ46oer2zCfbk_pF8AsRuE</recordid><startdate>20220711</startdate><enddate>20220711</enddate><creator>Kondo, Maiku</creator><creator>Hoshi, Masahiko</creator><creator>Hara, Yoshitaka</creator><creator>Nakamura, Sousuke</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220711</creationdate><title>Localizability Estimation based on Occupancy Grid Maps</title><author>Kondo, Maiku ; Hoshi, Masahiko ; Hara, Yoshitaka ; Nakamura, Sousuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-29925c756b2086d561327c2ca0a273ebbfa0c383eaff97abf83c1e4207d2688b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Correlation</topic><topic>Estimation</topic><topic>Location awareness</topic><topic>Mechatronics</topic><topic>Simultaneous localization and mapping</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kondo, Maiku</creatorcontrib><creatorcontrib>Hoshi, Masahiko</creatorcontrib><creatorcontrib>Hara, Yoshitaka</creatorcontrib><creatorcontrib>Nakamura, Sousuke</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kondo, Maiku</au><au>Hoshi, Masahiko</au><au>Hara, Yoshitaka</au><au>Nakamura, Sousuke</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Localizability Estimation based on Occupancy Grid Maps</atitle><btitle>2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)</btitle><stitle>AIM</stitle><date>2022-07-11</date><risdate>2022</risdate><spage>368</spage><epage>373</epage><pages>368-373</pages><eissn>2159-6255</eissn><eisbn>9781665413084</eisbn><eisbn>1665413085</eisbn><abstract>Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to estimate localizability, this paper proposes a method using local map correlation. Our method represents the localizability using a covariance matrix of a Gaussian distribution, not just a scalar value. The simulation experiment results showed that the uncertainty of localizability increased at locations where degeneration is likely to occur, suggesting that localizability could be estimated appropriately.</abstract><pub>IEEE</pub><doi>10.1109/AIM52237.2022.9863325</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2159-6255 |
ispartof | 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2022, p.368-373 |
issn | 2159-6255 |
language | eng |
recordid | cdi_ieee_primary_9863325 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Correlation Estimation Location awareness Mechatronics Simultaneous localization and mapping Uncertainty |
title | Localizability Estimation based on Occupancy Grid Maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Localizability%20Estimation%20based%20on%20Occupancy%20Grid%20Maps&rft.btitle=2022%20IEEE/ASME%20International%20Conference%20on%20Advanced%20Intelligent%20Mechatronics%20(AIM)&rft.au=Kondo,%20Maiku&rft.date=2022-07-11&rft.spage=368&rft.epage=373&rft.pages=368-373&rft.eissn=2159-6255&rft_id=info:doi/10.1109/AIM52237.2022.9863325&rft.eisbn=9781665413084&rft.eisbn_list=1665413085&rft_dat=%3Cieee_CHZPO%3E9863325%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-29925c756b2086d561327c2ca0a273ebbfa0c383eaff97abf83c1e4207d2688b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9863325&rfr_iscdi=true |