Loading…

Localizability Estimation based on Occupancy Grid Maps

Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to es...

Full description

Saved in:
Bibliographic Details
Main Authors: Kondo, Maiku, Hoshi, Masahiko, Hara, Yoshitaka, Nakamura, Sousuke
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 373
container_issue
container_start_page 368
container_title
container_volume
creator Kondo, Maiku
Hoshi, Masahiko
Hara, Yoshitaka
Nakamura, Sousuke
description Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to estimate localizability, this paper proposes a method using local map correlation. Our method represents the localizability using a covariance matrix of a Gaussian distribution, not just a scalar value. The simulation experiment results showed that the uncertainty of localizability increased at locations where degeneration is likely to occur, suggesting that localizability could be estimated appropriately.
doi_str_mv 10.1109/AIM52237.2022.9863325
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9863325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9863325</ieee_id><sourcerecordid>9863325</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-29925c756b2086d561327c2ca0a273ebbfa0c383eaff97abf83c1e4207d2688b3</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsLR5AhHyAol37s38LUuptZDSja7LnckERmIbkriIT2_Frs7ZfIfvCPEsoZQS3Mt6f1CIZEoExNJZTYTqTmTOWKm1qiSBre7FAqVyhUalHkU2jp8AIMH-kQuh60vgLv2wT12a5nw7TumLp3Q5557H2OTXcgzhu-dzmPPdkJr8wP24Eg8td2PMbrkUH6_b981bUR93-826LpIkmgp0DlUwSnsEqxulJaEJGBgYDUXvW4ZAliK3rTPsW0tBxgrBNKit9bQUT_-7KcZ46oer2zCfbk_pF8AsRuE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Localizability Estimation based on Occupancy Grid Maps</title><source>IEEE Xplore All Conference Series</source><creator>Kondo, Maiku ; Hoshi, Masahiko ; Hara, Yoshitaka ; Nakamura, Sousuke</creator><creatorcontrib>Kondo, Maiku ; Hoshi, Masahiko ; Hara, Yoshitaka ; Nakamura, Sousuke</creatorcontrib><description>Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to estimate localizability, this paper proposes a method using local map correlation. Our method represents the localizability using a covariance matrix of a Gaussian distribution, not just a scalar value. The simulation experiment results showed that the uncertainty of localizability increased at locations where degeneration is likely to occur, suggesting that localizability could be estimated appropriately.</description><identifier>EISSN: 2159-6255</identifier><identifier>EISBN: 9781665413084</identifier><identifier>EISBN: 1665413085</identifier><identifier>DOI: 10.1109/AIM52237.2022.9863325</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Correlation ; Estimation ; Location awareness ; Mechatronics ; Simultaneous localization and mapping ; Uncertainty</subject><ispartof>2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2022, p.368-373</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9863325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9863325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kondo, Maiku</creatorcontrib><creatorcontrib>Hoshi, Masahiko</creatorcontrib><creatorcontrib>Hara, Yoshitaka</creatorcontrib><creatorcontrib>Nakamura, Sousuke</creatorcontrib><title>Localizability Estimation based on Occupancy Grid Maps</title><title>2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)</title><addtitle>AIM</addtitle><description>Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to estimate localizability, this paper proposes a method using local map correlation. Our method represents the localizability using a covariance matrix of a Gaussian distribution, not just a scalar value. The simulation experiment results showed that the uncertainty of localizability increased at locations where degeneration is likely to occur, suggesting that localizability could be estimated appropriately.</description><subject>Computational modeling</subject><subject>Correlation</subject><subject>Estimation</subject><subject>Location awareness</subject><subject>Mechatronics</subject><subject>Simultaneous localization and mapping</subject><subject>Uncertainty</subject><issn>2159-6255</issn><isbn>9781665413084</isbn><isbn>1665413085</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsLR5AhHyAol37s38LUuptZDSja7LnckERmIbkriIT2_Frs7ZfIfvCPEsoZQS3Mt6f1CIZEoExNJZTYTqTmTOWKm1qiSBre7FAqVyhUalHkU2jp8AIMH-kQuh60vgLv2wT12a5nw7TumLp3Q5557H2OTXcgzhu-dzmPPdkJr8wP24Eg8td2PMbrkUH6_b981bUR93-826LpIkmgp0DlUwSnsEqxulJaEJGBgYDUXvW4ZAliK3rTPsW0tBxgrBNKit9bQUT_-7KcZ46oer2zCfbk_pF8AsRuE</recordid><startdate>20220711</startdate><enddate>20220711</enddate><creator>Kondo, Maiku</creator><creator>Hoshi, Masahiko</creator><creator>Hara, Yoshitaka</creator><creator>Nakamura, Sousuke</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220711</creationdate><title>Localizability Estimation based on Occupancy Grid Maps</title><author>Kondo, Maiku ; Hoshi, Masahiko ; Hara, Yoshitaka ; Nakamura, Sousuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-29925c756b2086d561327c2ca0a273ebbfa0c383eaff97abf83c1e4207d2688b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Correlation</topic><topic>Estimation</topic><topic>Location awareness</topic><topic>Mechatronics</topic><topic>Simultaneous localization and mapping</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kondo, Maiku</creatorcontrib><creatorcontrib>Hoshi, Masahiko</creatorcontrib><creatorcontrib>Hara, Yoshitaka</creatorcontrib><creatorcontrib>Nakamura, Sousuke</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kondo, Maiku</au><au>Hoshi, Masahiko</au><au>Hara, Yoshitaka</au><au>Nakamura, Sousuke</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Localizability Estimation based on Occupancy Grid Maps</atitle><btitle>2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)</btitle><stitle>AIM</stitle><date>2022-07-11</date><risdate>2022</risdate><spage>368</spage><epage>373</epage><pages>368-373</pages><eissn>2159-6255</eissn><eisbn>9781665413084</eisbn><eisbn>1665413085</eisbn><abstract>Simultaneous localization and mapping (SLAM) is a widely used technique in autonomous mobile robots. This study deals with the estimation of localizability, which indicates the reliability of localization at each location on the occupancy grid maps created by SLAM. There are several approaches to estimate localizability, this paper proposes a method using local map correlation. Our method represents the localizability using a covariance matrix of a Gaussian distribution, not just a scalar value. The simulation experiment results showed that the uncertainty of localizability increased at locations where degeneration is likely to occur, suggesting that localizability could be estimated appropriately.</abstract><pub>IEEE</pub><doi>10.1109/AIM52237.2022.9863325</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2159-6255
ispartof 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2022, p.368-373
issn 2159-6255
language eng
recordid cdi_ieee_primary_9863325
source IEEE Xplore All Conference Series
subjects Computational modeling
Correlation
Estimation
Location awareness
Mechatronics
Simultaneous localization and mapping
Uncertainty
title Localizability Estimation based on Occupancy Grid Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Localizability%20Estimation%20based%20on%20Occupancy%20Grid%20Maps&rft.btitle=2022%20IEEE/ASME%20International%20Conference%20on%20Advanced%20Intelligent%20Mechatronics%20(AIM)&rft.au=Kondo,%20Maiku&rft.date=2022-07-11&rft.spage=368&rft.epage=373&rft.pages=368-373&rft.eissn=2159-6255&rft_id=info:doi/10.1109/AIM52237.2022.9863325&rft.eisbn=9781665413084&rft.eisbn_list=1665413085&rft_dat=%3Cieee_CHZPO%3E9863325%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-29925c756b2086d561327c2ca0a273ebbfa0c383eaff97abf83c1e4207d2688b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9863325&rfr_iscdi=true