Loading…

Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging

Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2023-01, Vol.38 (1), p.472-490
Main Authors: Wang, Lisheng, Wang, Wenbo, Hueting, Raymond J. E., Rietveld, Gert, Ferreira, Jan Abraham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3
cites cdi_FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3
container_end_page 490
container_issue 1
container_start_page 472
container_title IEEE transactions on power electronics
container_volume 38
creator Wang, Lisheng
Wang, Wenbo
Hueting, Raymond J. E.
Rietveld, Gert
Ferreira, Jan Abraham
description Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection technology prevents WBG semiconductors from reaching their full potential, due to inherent parasitic inductances, large size, heat dissipation, and reliability issues of wire bonding technology. Therefore, this article presents a comprehensive review of topside interconnection technologies of WBG semiconductor power devices and modules. First, the challenges and driving factors for the interconnection of WBG semiconductor dies are discussed. Second, for each widely commercially used WBG semiconductor, i.e., silicon carbide and gallium nitride, technical details and innovative features of state-of-the-art interconnection techniques in packages are reviewed. Then, the majority of existing topside interconnection materials for WBG semiconductors are categorized and compared, followed by a discussion of their advantages, challenges, and failure modes. Based on this elaborate discussion, potential future directions of the interconnection technology development are given. It is concluded that the superior performance of WBG semiconductors can be obtained by combining novel materials with innovative designs for the topside interconnections.
doi_str_mv 10.1109/TPEL.2022.3200469
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9864062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9864062</ieee_id><sourcerecordid>2721427982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2U2y2aMWPwoFq1Y8hk12tqTabNxNLf57E1o8DbzzvDPwMHaJMEEEdbNc3M8nHDifCA6QZOqIjVAlGAOCPGYjyPM0zpUSp-wshDUAJingiL280k9Nu8jZaOnaUBuKZk1HvnJNQ1VXuyZE1vnoY9jc6casdBst3I589EabusfMtup6YKGrT72qm9U5O7H6K9DFYY7Z-8P9cvoUz58fZ9PbeVwJkXVxIpTMLJVJZUFKaWRmJLfCphrL0hqNmmeAnKe5sSgwhz4mUkoKY0sttBiz6_3d1rvvLYWuWLutb_qXBZccEy5VznsK91TlXQiebNH6eqP9b4FQDOaKwVwxmCsO5vrO1b5TE9E_r_IsgYyLP_llamk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721427982</pqid></control><display><type>article</type><title>Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Lisheng ; Wang, Wenbo ; Hueting, Raymond J. E. ; Rietveld, Gert ; Ferreira, Jan Abraham</creator><creatorcontrib>Wang, Lisheng ; Wang, Wenbo ; Hueting, Raymond J. E. ; Rietveld, Gert ; Ferreira, Jan Abraham</creatorcontrib><description>Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection technology prevents WBG semiconductors from reaching their full potential, due to inherent parasitic inductances, large size, heat dissipation, and reliability issues of wire bonding technology. Therefore, this article presents a comprehensive review of topside interconnection technologies of WBG semiconductor power devices and modules. First, the challenges and driving factors for the interconnection of WBG semiconductor dies are discussed. Second, for each widely commercially used WBG semiconductor, i.e., silicon carbide and gallium nitride, technical details and innovative features of state-of-the-art interconnection techniques in packages are reviewed. Then, the majority of existing topside interconnection materials for WBG semiconductors are categorized and compared, followed by a discussion of their advantages, challenges, and failure modes. Based on this elaborate discussion, potential future directions of the interconnection technology development are given. It is concluded that the superior performance of WBG semiconductors can be obtained by combining novel materials with innovative designs for the topside interconnections.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3200469</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; Bonding ; Challenges ; Electronic devices ; Energy gap ; Failure modes ; gallium nitride (GaN) ; Gallium nitrides ; Integrated circuit interconnections ; interconnection materials ; Interconnections ; Material properties ; Packaging ; Power semiconductor devices ; Reliability ; semiconductor device reliability ; Semiconductors ; Silicon ; Silicon carbide ; silicon carbide (SiC) ; topside interconnections ; wide bandgap (WBG) semiconductors ; Wire ; Wires</subject><ispartof>IEEE transactions on power electronics, 2023-01, Vol.38 (1), p.472-490</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3</citedby><cites>FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3</cites><orcidid>0000-0002-2156-4038 ; 0000-0003-1379-739X ; 0000-0002-0773-8978 ; 0000-0001-5445-4743 ; 0000-0002-5239-4019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9864062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Wang, Lisheng</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Hueting, Raymond J. E.</creatorcontrib><creatorcontrib>Rietveld, Gert</creatorcontrib><creatorcontrib>Ferreira, Jan Abraham</creatorcontrib><title>Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection technology prevents WBG semiconductors from reaching their full potential, due to inherent parasitic inductances, large size, heat dissipation, and reliability issues of wire bonding technology. Therefore, this article presents a comprehensive review of topside interconnection technologies of WBG semiconductor power devices and modules. First, the challenges and driving factors for the interconnection of WBG semiconductor dies are discussed. Second, for each widely commercially used WBG semiconductor, i.e., silicon carbide and gallium nitride, technical details and innovative features of state-of-the-art interconnection techniques in packages are reviewed. Then, the majority of existing topside interconnection materials for WBG semiconductors are categorized and compared, followed by a discussion of their advantages, challenges, and failure modes. Based on this elaborate discussion, potential future directions of the interconnection technology development are given. It is concluded that the superior performance of WBG semiconductors can be obtained by combining novel materials with innovative designs for the topside interconnections.</description><subject>Aluminum</subject><subject>Bonding</subject><subject>Challenges</subject><subject>Electronic devices</subject><subject>Energy gap</subject><subject>Failure modes</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>Integrated circuit interconnections</subject><subject>interconnection materials</subject><subject>Interconnections</subject><subject>Material properties</subject><subject>Packaging</subject><subject>Power semiconductor devices</subject><subject>Reliability</subject><subject>semiconductor device reliability</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><subject>topside interconnections</subject><subject>wide bandgap (WBG) semiconductors</subject><subject>Wire</subject><subject>Wires</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2U2y2aMWPwoFq1Y8hk12tqTabNxNLf57E1o8DbzzvDPwMHaJMEEEdbNc3M8nHDifCA6QZOqIjVAlGAOCPGYjyPM0zpUSp-wshDUAJingiL280k9Nu8jZaOnaUBuKZk1HvnJNQ1VXuyZE1vnoY9jc6casdBst3I589EabusfMtup6YKGrT72qm9U5O7H6K9DFYY7Z-8P9cvoUz58fZ9PbeVwJkXVxIpTMLJVJZUFKaWRmJLfCphrL0hqNmmeAnKe5sSgwhz4mUkoKY0sttBiz6_3d1rvvLYWuWLutb_qXBZccEy5VznsK91TlXQiebNH6eqP9b4FQDOaKwVwxmCsO5vrO1b5TE9E_r_IsgYyLP_llamk</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Wang, Lisheng</creator><creator>Wang, Wenbo</creator><creator>Hueting, Raymond J. E.</creator><creator>Rietveld, Gert</creator><creator>Ferreira, Jan Abraham</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2156-4038</orcidid><orcidid>https://orcid.org/0000-0003-1379-739X</orcidid><orcidid>https://orcid.org/0000-0002-0773-8978</orcidid><orcidid>https://orcid.org/0000-0001-5445-4743</orcidid><orcidid>https://orcid.org/0000-0002-5239-4019</orcidid></search><sort><creationdate>202301</creationdate><title>Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging</title><author>Wang, Lisheng ; Wang, Wenbo ; Hueting, Raymond J. E. ; Rietveld, Gert ; Ferreira, Jan Abraham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Bonding</topic><topic>Challenges</topic><topic>Electronic devices</topic><topic>Energy gap</topic><topic>Failure modes</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>Integrated circuit interconnections</topic><topic>interconnection materials</topic><topic>Interconnections</topic><topic>Material properties</topic><topic>Packaging</topic><topic>Power semiconductor devices</topic><topic>Reliability</topic><topic>semiconductor device reliability</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><topic>topside interconnections</topic><topic>wide bandgap (WBG) semiconductors</topic><topic>Wire</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lisheng</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Hueting, Raymond J. E.</creatorcontrib><creatorcontrib>Rietveld, Gert</creatorcontrib><creatorcontrib>Ferreira, Jan Abraham</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lisheng</au><au>Wang, Wenbo</au><au>Hueting, Raymond J. E.</au><au>Rietveld, Gert</au><au>Ferreira, Jan Abraham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-01</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>472</spage><epage>490</epage><pages>472-490</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection technology prevents WBG semiconductors from reaching their full potential, due to inherent parasitic inductances, large size, heat dissipation, and reliability issues of wire bonding technology. Therefore, this article presents a comprehensive review of topside interconnection technologies of WBG semiconductor power devices and modules. First, the challenges and driving factors for the interconnection of WBG semiconductor dies are discussed. Second, for each widely commercially used WBG semiconductor, i.e., silicon carbide and gallium nitride, technical details and innovative features of state-of-the-art interconnection techniques in packages are reviewed. Then, the majority of existing topside interconnection materials for WBG semiconductors are categorized and compared, followed by a discussion of their advantages, challenges, and failure modes. Based on this elaborate discussion, potential future directions of the interconnection technology development are given. It is concluded that the superior performance of WBG semiconductors can be obtained by combining novel materials with innovative designs for the topside interconnections.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3200469</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2156-4038</orcidid><orcidid>https://orcid.org/0000-0003-1379-739X</orcidid><orcidid>https://orcid.org/0000-0002-0773-8978</orcidid><orcidid>https://orcid.org/0000-0001-5445-4743</orcidid><orcidid>https://orcid.org/0000-0002-5239-4019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2023-01, Vol.38 (1), p.472-490
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9864062
source IEEE Electronic Library (IEL) Journals
subjects Aluminum
Bonding
Challenges
Electronic devices
Energy gap
Failure modes
gallium nitride (GaN)
Gallium nitrides
Integrated circuit interconnections
interconnection materials
Interconnections
Material properties
Packaging
Power semiconductor devices
Reliability
semiconductor device reliability
Semiconductors
Silicon
Silicon carbide
silicon carbide (SiC)
topside interconnections
wide bandgap (WBG) semiconductors
Wire
Wires
title Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20Topside%20Interconnections%20for%20Wide%20Bandgap%20Power%20Semiconductor%20Packaging&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wang,%20Lisheng&rft.date=2023-01&rft.volume=38&rft.issue=1&rft.spage=472&rft.epage=490&rft.pages=472-490&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3200469&rft_dat=%3Cproquest_ieee_%3E2721427982%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721427982&rft_id=info:pmid/&rft_ieee_id=9864062&rfr_iscdi=true