Loading…
Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging
Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection...
Saved in:
Published in: | IEEE transactions on power electronics 2023-01, Vol.38 (1), p.472-490 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3 |
container_end_page | 490 |
container_issue | 1 |
container_start_page | 472 |
container_title | IEEE transactions on power electronics |
container_volume | 38 |
creator | Wang, Lisheng Wang, Wenbo Hueting, Raymond J. E. Rietveld, Gert Ferreira, Jan Abraham |
description | Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection technology prevents WBG semiconductors from reaching their full potential, due to inherent parasitic inductances, large size, heat dissipation, and reliability issues of wire bonding technology. Therefore, this article presents a comprehensive review of topside interconnection technologies of WBG semiconductor power devices and modules. First, the challenges and driving factors for the interconnection of WBG semiconductor dies are discussed. Second, for each widely commercially used WBG semiconductor, i.e., silicon carbide and gallium nitride, technical details and innovative features of state-of-the-art interconnection techniques in packages are reviewed. Then, the majority of existing topside interconnection materials for WBG semiconductors are categorized and compared, followed by a discussion of their advantages, challenges, and failure modes. Based on this elaborate discussion, potential future directions of the interconnection technology development are given. It is concluded that the superior performance of WBG semiconductors can be obtained by combining novel materials with innovative designs for the topside interconnections. |
doi_str_mv | 10.1109/TPEL.2022.3200469 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9864062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9864062</ieee_id><sourcerecordid>2721427982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2U2y2aMWPwoFq1Y8hk12tqTabNxNLf57E1o8DbzzvDPwMHaJMEEEdbNc3M8nHDifCA6QZOqIjVAlGAOCPGYjyPM0zpUSp-wshDUAJingiL280k9Nu8jZaOnaUBuKZk1HvnJNQ1VXuyZE1vnoY9jc6casdBst3I589EabusfMtup6YKGrT72qm9U5O7H6K9DFYY7Z-8P9cvoUz58fZ9PbeVwJkXVxIpTMLJVJZUFKaWRmJLfCphrL0hqNmmeAnKe5sSgwhz4mUkoKY0sttBiz6_3d1rvvLYWuWLutb_qXBZccEy5VznsK91TlXQiebNH6eqP9b4FQDOaKwVwxmCsO5vrO1b5TE9E_r_IsgYyLP_llamk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721427982</pqid></control><display><type>article</type><title>Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Lisheng ; Wang, Wenbo ; Hueting, Raymond J. E. ; Rietveld, Gert ; Ferreira, Jan Abraham</creator><creatorcontrib>Wang, Lisheng ; Wang, Wenbo ; Hueting, Raymond J. E. ; Rietveld, Gert ; Ferreira, Jan Abraham</creatorcontrib><description>Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection technology prevents WBG semiconductors from reaching their full potential, due to inherent parasitic inductances, large size, heat dissipation, and reliability issues of wire bonding technology. Therefore, this article presents a comprehensive review of topside interconnection technologies of WBG semiconductor power devices and modules. First, the challenges and driving factors for the interconnection of WBG semiconductor dies are discussed. Second, for each widely commercially used WBG semiconductor, i.e., silicon carbide and gallium nitride, technical details and innovative features of state-of-the-art interconnection techniques in packages are reviewed. Then, the majority of existing topside interconnection materials for WBG semiconductors are categorized and compared, followed by a discussion of their advantages, challenges, and failure modes. Based on this elaborate discussion, potential future directions of the interconnection technology development are given. It is concluded that the superior performance of WBG semiconductors can be obtained by combining novel materials with innovative designs for the topside interconnections.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3200469</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; Bonding ; Challenges ; Electronic devices ; Energy gap ; Failure modes ; gallium nitride (GaN) ; Gallium nitrides ; Integrated circuit interconnections ; interconnection materials ; Interconnections ; Material properties ; Packaging ; Power semiconductor devices ; Reliability ; semiconductor device reliability ; Semiconductors ; Silicon ; Silicon carbide ; silicon carbide (SiC) ; topside interconnections ; wide bandgap (WBG) semiconductors ; Wire ; Wires</subject><ispartof>IEEE transactions on power electronics, 2023-01, Vol.38 (1), p.472-490</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3</citedby><cites>FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3</cites><orcidid>0000-0002-2156-4038 ; 0000-0003-1379-739X ; 0000-0002-0773-8978 ; 0000-0001-5445-4743 ; 0000-0002-5239-4019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9864062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Wang, Lisheng</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Hueting, Raymond J. E.</creatorcontrib><creatorcontrib>Rietveld, Gert</creatorcontrib><creatorcontrib>Ferreira, Jan Abraham</creatorcontrib><title>Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection technology prevents WBG semiconductors from reaching their full potential, due to inherent parasitic inductances, large size, heat dissipation, and reliability issues of wire bonding technology. Therefore, this article presents a comprehensive review of topside interconnection technologies of WBG semiconductor power devices and modules. First, the challenges and driving factors for the interconnection of WBG semiconductor dies are discussed. Second, for each widely commercially used WBG semiconductor, i.e., silicon carbide and gallium nitride, technical details and innovative features of state-of-the-art interconnection techniques in packages are reviewed. Then, the majority of existing topside interconnection materials for WBG semiconductors are categorized and compared, followed by a discussion of their advantages, challenges, and failure modes. Based on this elaborate discussion, potential future directions of the interconnection technology development are given. It is concluded that the superior performance of WBG semiconductors can be obtained by combining novel materials with innovative designs for the topside interconnections.</description><subject>Aluminum</subject><subject>Bonding</subject><subject>Challenges</subject><subject>Electronic devices</subject><subject>Energy gap</subject><subject>Failure modes</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>Integrated circuit interconnections</subject><subject>interconnection materials</subject><subject>Interconnections</subject><subject>Material properties</subject><subject>Packaging</subject><subject>Power semiconductor devices</subject><subject>Reliability</subject><subject>semiconductor device reliability</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><subject>topside interconnections</subject><subject>wide bandgap (WBG) semiconductors</subject><subject>Wire</subject><subject>Wires</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2U2y2aMWPwoFq1Y8hk12tqTabNxNLf57E1o8DbzzvDPwMHaJMEEEdbNc3M8nHDifCA6QZOqIjVAlGAOCPGYjyPM0zpUSp-wshDUAJingiL280k9Nu8jZaOnaUBuKZk1HvnJNQ1VXuyZE1vnoY9jc6casdBst3I589EabusfMtup6YKGrT72qm9U5O7H6K9DFYY7Z-8P9cvoUz58fZ9PbeVwJkXVxIpTMLJVJZUFKaWRmJLfCphrL0hqNmmeAnKe5sSgwhz4mUkoKY0sttBiz6_3d1rvvLYWuWLutb_qXBZccEy5VznsK91TlXQiebNH6eqP9b4FQDOaKwVwxmCsO5vrO1b5TE9E_r_IsgYyLP_llamk</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Wang, Lisheng</creator><creator>Wang, Wenbo</creator><creator>Hueting, Raymond J. E.</creator><creator>Rietveld, Gert</creator><creator>Ferreira, Jan Abraham</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2156-4038</orcidid><orcidid>https://orcid.org/0000-0003-1379-739X</orcidid><orcidid>https://orcid.org/0000-0002-0773-8978</orcidid><orcidid>https://orcid.org/0000-0001-5445-4743</orcidid><orcidid>https://orcid.org/0000-0002-5239-4019</orcidid></search><sort><creationdate>202301</creationdate><title>Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging</title><author>Wang, Lisheng ; Wang, Wenbo ; Hueting, Raymond J. E. ; Rietveld, Gert ; Ferreira, Jan Abraham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Bonding</topic><topic>Challenges</topic><topic>Electronic devices</topic><topic>Energy gap</topic><topic>Failure modes</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>Integrated circuit interconnections</topic><topic>interconnection materials</topic><topic>Interconnections</topic><topic>Material properties</topic><topic>Packaging</topic><topic>Power semiconductor devices</topic><topic>Reliability</topic><topic>semiconductor device reliability</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><topic>topside interconnections</topic><topic>wide bandgap (WBG) semiconductors</topic><topic>Wire</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lisheng</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Hueting, Raymond J. E.</creatorcontrib><creatorcontrib>Rietveld, Gert</creatorcontrib><creatorcontrib>Ferreira, Jan Abraham</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lisheng</au><au>Wang, Wenbo</au><au>Hueting, Raymond J. E.</au><au>Rietveld, Gert</au><au>Ferreira, Jan Abraham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-01</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>472</spage><epage>490</epage><pages>472-490</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Due to their superior material properties, wide bandgap (WBG) semiconductors enable the application of power electronics at higher temperature operation, higher frequencies, and higher efficiencies compared to silicon (Si). However, the commonly-used aluminum wire bonding as topside interconnection technology prevents WBG semiconductors from reaching their full potential, due to inherent parasitic inductances, large size, heat dissipation, and reliability issues of wire bonding technology. Therefore, this article presents a comprehensive review of topside interconnection technologies of WBG semiconductor power devices and modules. First, the challenges and driving factors for the interconnection of WBG semiconductor dies are discussed. Second, for each widely commercially used WBG semiconductor, i.e., silicon carbide and gallium nitride, technical details and innovative features of state-of-the-art interconnection techniques in packages are reviewed. Then, the majority of existing topside interconnection materials for WBG semiconductors are categorized and compared, followed by a discussion of their advantages, challenges, and failure modes. Based on this elaborate discussion, potential future directions of the interconnection technology development are given. It is concluded that the superior performance of WBG semiconductors can be obtained by combining novel materials with innovative designs for the topside interconnections.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3200469</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2156-4038</orcidid><orcidid>https://orcid.org/0000-0003-1379-739X</orcidid><orcidid>https://orcid.org/0000-0002-0773-8978</orcidid><orcidid>https://orcid.org/0000-0001-5445-4743</orcidid><orcidid>https://orcid.org/0000-0002-5239-4019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2023-01, Vol.38 (1), p.472-490 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9864062 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aluminum Bonding Challenges Electronic devices Energy gap Failure modes gallium nitride (GaN) Gallium nitrides Integrated circuit interconnections interconnection materials Interconnections Material properties Packaging Power semiconductor devices Reliability semiconductor device reliability Semiconductors Silicon Silicon carbide silicon carbide (SiC) topside interconnections wide bandgap (WBG) semiconductors Wire Wires |
title | Review of Topside Interconnections for Wide Bandgap Power Semiconductor Packaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20Topside%20Interconnections%20for%20Wide%20Bandgap%20Power%20Semiconductor%20Packaging&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wang,%20Lisheng&rft.date=2023-01&rft.volume=38&rft.issue=1&rft.spage=472&rft.epage=490&rft.pages=472-490&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3200469&rft_dat=%3Cproquest_ieee_%3E2721427982%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-43976feb4cf0777d76d72f3f5a1bbfda1a26012258df131801bbee9973dfba3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721427982&rft_id=info:pmid/&rft_ieee_id=9864062&rfr_iscdi=true |