Loading…

An Incremental Meta Defect Detection System for Printed Circuit Boards

Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental...

Full description

Saved in:
Bibliographic Details
Main Authors: Gung, Jia-Jiun, Lin, Chia-Yu, Lin, Pin-Fan, Chung, Wei-Kuang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 308
container_issue
container_start_page 307
container_title
container_volume
creator Gung, Jia-Jiun
Lin, Chia-Yu
Lin, Pin-Fan
Chung, Wei-Kuang
description Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental Meta Defect Detection (IMDD) System," which utilizes incremental meta-learning to detect tiny defects. We decompose the model into feature pyramids and use feature alignment to improve the sensitivity of minor defects. Incremental learning utilizes knowledge distillation but this affects the learning of new categories, so the model is quickly adapted to new categories. We further combine incremental learning with meta-learning to increase the generality of the model. In experiments, the proposed model is 1.14 times more accurate than previous techniques. Therefore, the proposed system can enhance the ability to identify minor defects and quickly adapt to new defect types.
doi_str_mv 10.1109/ICCE-Taiwan55306.2022.9869108
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9869108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9869108</ieee_id><sourcerecordid>9869108</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-acb74295136242160c36269f157cd3521fd6485f09d7daeaa23fdaff163ae1f13</originalsourceid><addsrcrecordid>eNotz8FKAzEUheEoCNbaJ3CTjcsZ700mmcmyjq0WKgpWcFeukxuItFPJRKRv74Bdff_qwBHiFqFEBHe3attFsaH4S70xGmypQKnSNdYhNGfiCq01VQ0GPs7FRJnaFI1qqksxG4YvANDoANBNxHLey1XfJd5zn2knnzmTfODAXR7JI_HQy7fjkHkvwyHJ1xT7zF62MXU_Mcv7AyU_XIuLQLuBZyen4n252LRPxfrlcdXO10VUoHNB3WddKWdQW1UptNCNYV1AU3deG4XB26oxAZyvPTGR0sFTCGg1MQbUU3HzvxuZefud4p7ScXu6rf8AOOtOmQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Incremental Meta Defect Detection System for Printed Circuit Boards</title><source>IEEE Xplore All Conference Series</source><creator>Gung, Jia-Jiun ; Lin, Chia-Yu ; Lin, Pin-Fan ; Chung, Wei-Kuang</creator><creatorcontrib>Gung, Jia-Jiun ; Lin, Chia-Yu ; Lin, Pin-Fan ; Chung, Wei-Kuang</creatorcontrib><description>Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental Meta Defect Detection (IMDD) System," which utilizes incremental meta-learning to detect tiny defects. We decompose the model into feature pyramids and use feature alignment to improve the sensitivity of minor defects. Incremental learning utilizes knowledge distillation but this affects the learning of new categories, so the model is quickly adapted to new categories. We further combine incremental learning with meta-learning to increase the generality of the model. In experiments, the proposed model is 1.14 times more accurate than previous techniques. Therefore, the proposed system can enhance the ability to identify minor defects and quickly adapt to new defect types.</description><identifier>EISSN: 2575-8284</identifier><identifier>EISBN: 166547050X</identifier><identifier>EISBN: 9781665470506</identifier><identifier>DOI: 10.1109/ICCE-Taiwan55306.2022.9869108</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Consumer electronics ; Integrated circuit modeling ; Object detection ; Printed circuits ; Production ; Sensitivity</subject><ispartof>2022 IEEE International Conference on Consumer Electronics - Taiwan, 2022, p.307-308</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9869108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9869108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gung, Jia-Jiun</creatorcontrib><creatorcontrib>Lin, Chia-Yu</creatorcontrib><creatorcontrib>Lin, Pin-Fan</creatorcontrib><creatorcontrib>Chung, Wei-Kuang</creatorcontrib><title>An Incremental Meta Defect Detection System for Printed Circuit Boards</title><title>2022 IEEE International Conference on Consumer Electronics - Taiwan</title><addtitle>ICCE-TAIWAN</addtitle><description>Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental Meta Defect Detection (IMDD) System," which utilizes incremental meta-learning to detect tiny defects. We decompose the model into feature pyramids and use feature alignment to improve the sensitivity of minor defects. Incremental learning utilizes knowledge distillation but this affects the learning of new categories, so the model is quickly adapted to new categories. We further combine incremental learning with meta-learning to increase the generality of the model. In experiments, the proposed model is 1.14 times more accurate than previous techniques. Therefore, the proposed system can enhance the ability to identify minor defects and quickly adapt to new defect types.</description><subject>Adaptation models</subject><subject>Consumer electronics</subject><subject>Integrated circuit modeling</subject><subject>Object detection</subject><subject>Printed circuits</subject><subject>Production</subject><subject>Sensitivity</subject><issn>2575-8284</issn><isbn>166547050X</isbn><isbn>9781665470506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz8FKAzEUheEoCNbaJ3CTjcsZ700mmcmyjq0WKgpWcFeukxuItFPJRKRv74Bdff_qwBHiFqFEBHe3attFsaH4S70xGmypQKnSNdYhNGfiCq01VQ0GPs7FRJnaFI1qqksxG4YvANDoANBNxHLey1XfJd5zn2knnzmTfODAXR7JI_HQy7fjkHkvwyHJ1xT7zF62MXU_Mcv7AyU_XIuLQLuBZyen4n252LRPxfrlcdXO10VUoHNB3WddKWdQW1UptNCNYV1AU3deG4XB26oxAZyvPTGR0sFTCGg1MQbUU3HzvxuZefud4p7ScXu6rf8AOOtOmQ</recordid><startdate>20220706</startdate><enddate>20220706</enddate><creator>Gung, Jia-Jiun</creator><creator>Lin, Chia-Yu</creator><creator>Lin, Pin-Fan</creator><creator>Chung, Wei-Kuang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220706</creationdate><title>An Incremental Meta Defect Detection System for Printed Circuit Boards</title><author>Gung, Jia-Jiun ; Lin, Chia-Yu ; Lin, Pin-Fan ; Chung, Wei-Kuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-acb74295136242160c36269f157cd3521fd6485f09d7daeaa23fdaff163ae1f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Consumer electronics</topic><topic>Integrated circuit modeling</topic><topic>Object detection</topic><topic>Printed circuits</topic><topic>Production</topic><topic>Sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Gung, Jia-Jiun</creatorcontrib><creatorcontrib>Lin, Chia-Yu</creatorcontrib><creatorcontrib>Lin, Pin-Fan</creatorcontrib><creatorcontrib>Chung, Wei-Kuang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gung, Jia-Jiun</au><au>Lin, Chia-Yu</au><au>Lin, Pin-Fan</au><au>Chung, Wei-Kuang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Incremental Meta Defect Detection System for Printed Circuit Boards</atitle><btitle>2022 IEEE International Conference on Consumer Electronics - Taiwan</btitle><stitle>ICCE-TAIWAN</stitle><date>2022-07-06</date><risdate>2022</risdate><spage>307</spage><epage>308</epage><pages>307-308</pages><eissn>2575-8284</eissn><eisbn>166547050X</eisbn><eisbn>9781665470506</eisbn><abstract>Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental Meta Defect Detection (IMDD) System," which utilizes incremental meta-learning to detect tiny defects. We decompose the model into feature pyramids and use feature alignment to improve the sensitivity of minor defects. Incremental learning utilizes knowledge distillation but this affects the learning of new categories, so the model is quickly adapted to new categories. We further combine incremental learning with meta-learning to increase the generality of the model. In experiments, the proposed model is 1.14 times more accurate than previous techniques. Therefore, the proposed system can enhance the ability to identify minor defects and quickly adapt to new defect types.</abstract><pub>IEEE</pub><doi>10.1109/ICCE-Taiwan55306.2022.9869108</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-8284
ispartof 2022 IEEE International Conference on Consumer Electronics - Taiwan, 2022, p.307-308
issn 2575-8284
language eng
recordid cdi_ieee_primary_9869108
source IEEE Xplore All Conference Series
subjects Adaptation models
Consumer electronics
Integrated circuit modeling
Object detection
Printed circuits
Production
Sensitivity
title An Incremental Meta Defect Detection System for Printed Circuit Boards
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Incremental%20Meta%20Defect%20Detection%20System%20for%20Printed%20Circuit%20Boards&rft.btitle=2022%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20-%20Taiwan&rft.au=Gung,%20Jia-Jiun&rft.date=2022-07-06&rft.spage=307&rft.epage=308&rft.pages=307-308&rft.eissn=2575-8284&rft_id=info:doi/10.1109/ICCE-Taiwan55306.2022.9869108&rft.eisbn=166547050X&rft.eisbn_list=9781665470506&rft_dat=%3Cieee_CHZPO%3E9869108%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-acb74295136242160c36269f157cd3521fd6485f09d7daeaa23fdaff163ae1f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9869108&rfr_iscdi=true