Loading…
An Incremental Meta Defect Detection System for Printed Circuit Boards
Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 308 |
container_issue | |
container_start_page | 307 |
container_title | |
container_volume | |
creator | Gung, Jia-Jiun Lin, Chia-Yu Lin, Pin-Fan Chung, Wei-Kuang |
description | Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental Meta Defect Detection (IMDD) System," which utilizes incremental meta-learning to detect tiny defects. We decompose the model into feature pyramids and use feature alignment to improve the sensitivity of minor defects. Incremental learning utilizes knowledge distillation but this affects the learning of new categories, so the model is quickly adapted to new categories. We further combine incremental learning with meta-learning to increase the generality of the model. In experiments, the proposed model is 1.14 times more accurate than previous techniques. Therefore, the proposed system can enhance the ability to identify minor defects and quickly adapt to new defect types. |
doi_str_mv | 10.1109/ICCE-Taiwan55306.2022.9869108 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9869108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9869108</ieee_id><sourcerecordid>9869108</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-acb74295136242160c36269f157cd3521fd6485f09d7daeaa23fdaff163ae1f13</originalsourceid><addsrcrecordid>eNotz8FKAzEUheEoCNbaJ3CTjcsZ700mmcmyjq0WKgpWcFeukxuItFPJRKRv74Bdff_qwBHiFqFEBHe3attFsaH4S70xGmypQKnSNdYhNGfiCq01VQ0GPs7FRJnaFI1qqksxG4YvANDoANBNxHLey1XfJd5zn2knnzmTfODAXR7JI_HQy7fjkHkvwyHJ1xT7zF62MXU_Mcv7AyU_XIuLQLuBZyen4n252LRPxfrlcdXO10VUoHNB3WddKWdQW1UptNCNYV1AU3deG4XB26oxAZyvPTGR0sFTCGg1MQbUU3HzvxuZefud4p7ScXu6rf8AOOtOmQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Incremental Meta Defect Detection System for Printed Circuit Boards</title><source>IEEE Xplore All Conference Series</source><creator>Gung, Jia-Jiun ; Lin, Chia-Yu ; Lin, Pin-Fan ; Chung, Wei-Kuang</creator><creatorcontrib>Gung, Jia-Jiun ; Lin, Chia-Yu ; Lin, Pin-Fan ; Chung, Wei-Kuang</creatorcontrib><description>Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental Meta Defect Detection (IMDD) System," which utilizes incremental meta-learning to detect tiny defects. We decompose the model into feature pyramids and use feature alignment to improve the sensitivity of minor defects. Incremental learning utilizes knowledge distillation but this affects the learning of new categories, so the model is quickly adapted to new categories. We further combine incremental learning with meta-learning to increase the generality of the model. In experiments, the proposed model is 1.14 times more accurate than previous techniques. Therefore, the proposed system can enhance the ability to identify minor defects and quickly adapt to new defect types.</description><identifier>EISSN: 2575-8284</identifier><identifier>EISBN: 166547050X</identifier><identifier>EISBN: 9781665470506</identifier><identifier>DOI: 10.1109/ICCE-Taiwan55306.2022.9869108</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Consumer electronics ; Integrated circuit modeling ; Object detection ; Printed circuits ; Production ; Sensitivity</subject><ispartof>2022 IEEE International Conference on Consumer Electronics - Taiwan, 2022, p.307-308</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9869108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9869108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gung, Jia-Jiun</creatorcontrib><creatorcontrib>Lin, Chia-Yu</creatorcontrib><creatorcontrib>Lin, Pin-Fan</creatorcontrib><creatorcontrib>Chung, Wei-Kuang</creatorcontrib><title>An Incremental Meta Defect Detection System for Printed Circuit Boards</title><title>2022 IEEE International Conference on Consumer Electronics - Taiwan</title><addtitle>ICCE-TAIWAN</addtitle><description>Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental Meta Defect Detection (IMDD) System," which utilizes incremental meta-learning to detect tiny defects. We decompose the model into feature pyramids and use feature alignment to improve the sensitivity of minor defects. Incremental learning utilizes knowledge distillation but this affects the learning of new categories, so the model is quickly adapted to new categories. We further combine incremental learning with meta-learning to increase the generality of the model. In experiments, the proposed model is 1.14 times more accurate than previous techniques. Therefore, the proposed system can enhance the ability to identify minor defects and quickly adapt to new defect types.</description><subject>Adaptation models</subject><subject>Consumer electronics</subject><subject>Integrated circuit modeling</subject><subject>Object detection</subject><subject>Printed circuits</subject><subject>Production</subject><subject>Sensitivity</subject><issn>2575-8284</issn><isbn>166547050X</isbn><isbn>9781665470506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz8FKAzEUheEoCNbaJ3CTjcsZ700mmcmyjq0WKgpWcFeukxuItFPJRKRv74Bdff_qwBHiFqFEBHe3attFsaH4S70xGmypQKnSNdYhNGfiCq01VQ0GPs7FRJnaFI1qqksxG4YvANDoANBNxHLey1XfJd5zn2knnzmTfODAXR7JI_HQy7fjkHkvwyHJ1xT7zF62MXU_Mcv7AyU_XIuLQLuBZyen4n252LRPxfrlcdXO10VUoHNB3WddKWdQW1UptNCNYV1AU3deG4XB26oxAZyvPTGR0sFTCGg1MQbUU3HzvxuZefud4p7ScXu6rf8AOOtOmQ</recordid><startdate>20220706</startdate><enddate>20220706</enddate><creator>Gung, Jia-Jiun</creator><creator>Lin, Chia-Yu</creator><creator>Lin, Pin-Fan</creator><creator>Chung, Wei-Kuang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220706</creationdate><title>An Incremental Meta Defect Detection System for Printed Circuit Boards</title><author>Gung, Jia-Jiun ; Lin, Chia-Yu ; Lin, Pin-Fan ; Chung, Wei-Kuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-acb74295136242160c36269f157cd3521fd6485f09d7daeaa23fdaff163ae1f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Consumer electronics</topic><topic>Integrated circuit modeling</topic><topic>Object detection</topic><topic>Printed circuits</topic><topic>Production</topic><topic>Sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Gung, Jia-Jiun</creatorcontrib><creatorcontrib>Lin, Chia-Yu</creatorcontrib><creatorcontrib>Lin, Pin-Fan</creatorcontrib><creatorcontrib>Chung, Wei-Kuang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gung, Jia-Jiun</au><au>Lin, Chia-Yu</au><au>Lin, Pin-Fan</au><au>Chung, Wei-Kuang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Incremental Meta Defect Detection System for Printed Circuit Boards</atitle><btitle>2022 IEEE International Conference on Consumer Electronics - Taiwan</btitle><stitle>ICCE-TAIWAN</stitle><date>2022-07-06</date><risdate>2022</risdate><spage>307</spage><epage>308</epage><pages>307-308</pages><eissn>2575-8284</eissn><eisbn>166547050X</eisbn><eisbn>9781665470506</eisbn><abstract>Defect detection is essential in production lines to guarantee the quality of products. However, detecting tiny defects is difficult. Besides, as the variety of products increases, the variety of defects also increases. Models take much time to retrain. In this paper, we propose an "Incremental Meta Defect Detection (IMDD) System," which utilizes incremental meta-learning to detect tiny defects. We decompose the model into feature pyramids and use feature alignment to improve the sensitivity of minor defects. Incremental learning utilizes knowledge distillation but this affects the learning of new categories, so the model is quickly adapted to new categories. We further combine incremental learning with meta-learning to increase the generality of the model. In experiments, the proposed model is 1.14 times more accurate than previous techniques. Therefore, the proposed system can enhance the ability to identify minor defects and quickly adapt to new defect types.</abstract><pub>IEEE</pub><doi>10.1109/ICCE-Taiwan55306.2022.9869108</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-8284 |
ispartof | 2022 IEEE International Conference on Consumer Electronics - Taiwan, 2022, p.307-308 |
issn | 2575-8284 |
language | eng |
recordid | cdi_ieee_primary_9869108 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Consumer electronics Integrated circuit modeling Object detection Printed circuits Production Sensitivity |
title | An Incremental Meta Defect Detection System for Printed Circuit Boards |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Incremental%20Meta%20Defect%20Detection%20System%20for%20Printed%20Circuit%20Boards&rft.btitle=2022%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20-%20Taiwan&rft.au=Gung,%20Jia-Jiun&rft.date=2022-07-06&rft.spage=307&rft.epage=308&rft.pages=307-308&rft.eissn=2575-8284&rft_id=info:doi/10.1109/ICCE-Taiwan55306.2022.9869108&rft.eisbn=166547050X&rft.eisbn_list=9781665470506&rft_dat=%3Cieee_CHZPO%3E9869108%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-acb74295136242160c36269f157cd3521fd6485f09d7daeaa23fdaff163ae1f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9869108&rfr_iscdi=true |