Loading…
A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution
Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate differen...
Saved in:
Published in: | IEEE transactions on multimedia 2023-01, Vol.25, p.1-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273 |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Tania, Sheikh Karmakar, Gour Teng, Shyh Wei Murshed, Manzur |
description | Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate different textures. Local texture descriptors are widely used in image segmentation as they comprise pixel-wise features. The Weber local descriptor (WLD) with differential excitation and gradient orientation components, inspired by Weber's Law, has been leveraged in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique. However, WLD has inherent drawbacks in the formulation of the components that limit its discriminatory capability. This paper introduces a novel texture descriptor by directly modelling the distribution of intensity-variation in the parametric space of the Weibull distribution using its shape and scale parameters. A unified 'joint scale' texture property is introduced, which can discriminate textures better than the individual parameters while keeping the length of the descriptor shorter. Additionally, the accuracy of WLD's gradient orientation component is improved by using an extended Sobel operator and expressing gradients in [-\pi /2,\pi /2) range. When incorporated in ICM, the proposed texture descriptor has consistently outperformed WLD and a recent enhancement with radial mean WLD (RM-WLD) on three benchmark datasets. It has also outperformed two other texture segmentation techniques and their deep learning based improvements. |
doi_str_mv | 10.1109/TMM.2022.3204220 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9875965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9875965</ieee_id><sourcerecordid>2885649900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ1-7mWFq_oEXRFo8hm81iyrZZkyzov3dri6cZZp53Bh6ErglMCAF5t1ouJxQonTAKnFI4QSMiOckAiuJ06AWFTFIC5-gixg0A4QKKEVpP8Zuv-pjwwhvd4pX9Tn2weG6jCa5LPmC3w-nT4lcd9Nam4Ax-77Sx2Dd_8w_rqr5t8dzFYVn1yfndJTprdBvt1bGO0frhfjV7yhYvj8-z6SIzlPOUCVkbXbFaNJIAlNIwCTlwoyVlpDY856K2oAUwRgtqZK0rUkEtqyanJacFG6Pbw90u-K_exqQ2vg-74aWiZSlyLiXAQMGBMsHHGGyjuuC2OvwoAmovTw3y1F6eOsobIjeHiLPW_uOyLITMBfsFvxtprA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885649900</pqid></control><display><type>article</type><title>A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tania, Sheikh ; Karmakar, Gour ; Teng, Shyh Wei ; Murshed, Manzur</creator><creatorcontrib>Tania, Sheikh ; Karmakar, Gour ; Teng, Shyh Wei ; Murshed, Manzur</creatorcontrib><description>Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate different textures. Local texture descriptors are widely used in image segmentation as they comprise pixel-wise features. The Weber local descriptor (WLD) with differential excitation and gradient orientation components, inspired by Weber's Law, has been leveraged in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique. However, WLD has inherent drawbacks in the formulation of the components that limit its discriminatory capability. This paper introduces a novel texture descriptor by directly modelling the distribution of intensity-variation in the parametric space of the Weibull distribution using its shape and scale parameters. A unified 'joint scale' texture property is introduced, which can discriminate textures better than the individual parameters while keeping the length of the descriptor shorter. Additionally, the accuracy of WLD's gradient orientation component is improved by using an extended Sobel operator and expressing gradients in <inline-formula><tex-math notation="LaTeX">[-\pi /2,\pi /2)</tex-math></inline-formula> range. When incorporated in ICM, the proposed texture descriptor has consistently outperformed WLD and a recent enhancement with radial mean WLD (RM-WLD) on three benchmark datasets. It has also outperformed two other texture segmentation techniques and their deep learning based improvements.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3204220</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Feature extraction ; Histograms ; Image segmentation ; Iterative methods ; Local texture descriptor ; Mathematical models ; Operators (mathematics) ; Parameters ; Pixels ; Shape ; Texture ; the Sobel operator ; the Weibull distribution ; Visualization ; Weibull distribution</subject><ispartof>IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273</cites><orcidid>0000-0003-0347-3797 ; 0000-0001-7079-9717 ; 0000-0002-1308-7315 ; 0000-0002-1117-8563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9875965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Tania, Sheikh</creatorcontrib><creatorcontrib>Karmakar, Gour</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Murshed, Manzur</creatorcontrib><title>A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate different textures. Local texture descriptors are widely used in image segmentation as they comprise pixel-wise features. The Weber local descriptor (WLD) with differential excitation and gradient orientation components, inspired by Weber's Law, has been leveraged in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique. However, WLD has inherent drawbacks in the formulation of the components that limit its discriminatory capability. This paper introduces a novel texture descriptor by directly modelling the distribution of intensity-variation in the parametric space of the Weibull distribution using its shape and scale parameters. A unified 'joint scale' texture property is introduced, which can discriminate textures better than the individual parameters while keeping the length of the descriptor shorter. Additionally, the accuracy of WLD's gradient orientation component is improved by using an extended Sobel operator and expressing gradients in <inline-formula><tex-math notation="LaTeX">[-\pi /2,\pi /2)</tex-math></inline-formula> range. When incorporated in ICM, the proposed texture descriptor has consistently outperformed WLD and a recent enhancement with radial mean WLD (RM-WLD) on three benchmark datasets. It has also outperformed two other texture segmentation techniques and their deep learning based improvements.</description><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Iterative methods</subject><subject>Local texture descriptor</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Pixels</subject><subject>Shape</subject><subject>Texture</subject><subject>the Sobel operator</subject><subject>the Weibull distribution</subject><subject>Visualization</subject><subject>Weibull distribution</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ1-7mWFq_oEXRFo8hm81iyrZZkyzov3dri6cZZp53Bh6ErglMCAF5t1ouJxQonTAKnFI4QSMiOckAiuJ06AWFTFIC5-gixg0A4QKKEVpP8Zuv-pjwwhvd4pX9Tn2weG6jCa5LPmC3w-nT4lcd9Nam4Ax-77Sx2Dd_8w_rqr5t8dzFYVn1yfndJTprdBvt1bGO0frhfjV7yhYvj8-z6SIzlPOUCVkbXbFaNJIAlNIwCTlwoyVlpDY856K2oAUwRgtqZK0rUkEtqyanJacFG6Pbw90u-K_exqQ2vg-74aWiZSlyLiXAQMGBMsHHGGyjuuC2OvwoAmovTw3y1F6eOsobIjeHiLPW_uOyLITMBfsFvxtprA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Tania, Sheikh</creator><creator>Karmakar, Gour</creator><creator>Teng, Shyh Wei</creator><creator>Murshed, Manzur</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0347-3797</orcidid><orcidid>https://orcid.org/0000-0001-7079-9717</orcidid><orcidid>https://orcid.org/0000-0002-1308-7315</orcidid><orcidid>https://orcid.org/0000-0002-1117-8563</orcidid></search><sort><creationdate>20230101</creationdate><title>A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution</title><author>Tania, Sheikh ; Karmakar, Gour ; Teng, Shyh Wei ; Murshed, Manzur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Iterative methods</topic><topic>Local texture descriptor</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Pixels</topic><topic>Shape</topic><topic>Texture</topic><topic>the Sobel operator</topic><topic>the Weibull distribution</topic><topic>Visualization</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tania, Sheikh</creatorcontrib><creatorcontrib>Karmakar, Gour</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Murshed, Manzur</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tania, Sheikh</au><au>Karmakar, Gour</au><au>Teng, Shyh Wei</au><au>Murshed, Manzur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>25</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate different textures. Local texture descriptors are widely used in image segmentation as they comprise pixel-wise features. The Weber local descriptor (WLD) with differential excitation and gradient orientation components, inspired by Weber's Law, has been leveraged in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique. However, WLD has inherent drawbacks in the formulation of the components that limit its discriminatory capability. This paper introduces a novel texture descriptor by directly modelling the distribution of intensity-variation in the parametric space of the Weibull distribution using its shape and scale parameters. A unified 'joint scale' texture property is introduced, which can discriminate textures better than the individual parameters while keeping the length of the descriptor shorter. Additionally, the accuracy of WLD's gradient orientation component is improved by using an extended Sobel operator and expressing gradients in <inline-formula><tex-math notation="LaTeX">[-\pi /2,\pi /2)</tex-math></inline-formula> range. When incorporated in ICM, the proposed texture descriptor has consistently outperformed WLD and a recent enhancement with radial mean WLD (RM-WLD) on three benchmark datasets. It has also outperformed two other texture segmentation techniques and their deep learning based improvements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3204220</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0347-3797</orcidid><orcidid>https://orcid.org/0000-0001-7079-9717</orcidid><orcidid>https://orcid.org/0000-0002-1308-7315</orcidid><orcidid>https://orcid.org/0000-0002-1117-8563</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_9875965 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computational modeling Feature extraction Histograms Image segmentation Iterative methods Local texture descriptor Mathematical models Operators (mathematics) Parameters Pixels Shape Texture the Sobel operator the Weibull distribution Visualization Weibull distribution |
title | A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Local%20Texture%20Descriptor%20in%20the%20Parametric%20Space%20of%20the%20Weibull%20Distribution&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Tania,%20Sheikh&rft.date=2023-01-01&rft.volume=25&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3204220&rft_dat=%3Cproquest_ieee_%3E2885649900%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885649900&rft_id=info:pmid/&rft_ieee_id=9875965&rfr_iscdi=true |