Loading…

A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution

Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate differen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2023-01, Vol.25, p.1-13
Main Authors: Tania, Sheikh, Karmakar, Gour, Teng, Shyh Wei, Murshed, Manzur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on multimedia
container_volume 25
creator Tania, Sheikh
Karmakar, Gour
Teng, Shyh Wei
Murshed, Manzur
description Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate different textures. Local texture descriptors are widely used in image segmentation as they comprise pixel-wise features. The Weber local descriptor (WLD) with differential excitation and gradient orientation components, inspired by Weber's Law, has been leveraged in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique. However, WLD has inherent drawbacks in the formulation of the components that limit its discriminatory capability. This paper introduces a novel texture descriptor by directly modelling the distribution of intensity-variation in the parametric space of the Weibull distribution using its shape and scale parameters. A unified 'joint scale' texture property is introduced, which can discriminate textures better than the individual parameters while keeping the length of the descriptor shorter. Additionally, the accuracy of WLD's gradient orientation component is improved by using an extended Sobel operator and expressing gradients in [-\pi /2,\pi /2) range. When incorporated in ICM, the proposed texture descriptor has consistently outperformed WLD and a recent enhancement with radial mean WLD (RM-WLD) on three benchmark datasets. It has also outperformed two other texture segmentation techniques and their deep learning based improvements.
doi_str_mv 10.1109/TMM.2022.3204220
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9875965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9875965</ieee_id><sourcerecordid>2885649900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ1-7mWFq_oEXRFo8hm81iyrZZkyzov3dri6cZZp53Bh6ErglMCAF5t1ouJxQonTAKnFI4QSMiOckAiuJ06AWFTFIC5-gixg0A4QKKEVpP8Zuv-pjwwhvd4pX9Tn2weG6jCa5LPmC3w-nT4lcd9Nam4Ax-77Sx2Dd_8w_rqr5t8dzFYVn1yfndJTprdBvt1bGO0frhfjV7yhYvj8-z6SIzlPOUCVkbXbFaNJIAlNIwCTlwoyVlpDY856K2oAUwRgtqZK0rUkEtqyanJacFG6Pbw90u-K_exqQ2vg-74aWiZSlyLiXAQMGBMsHHGGyjuuC2OvwoAmovTw3y1F6eOsobIjeHiLPW_uOyLITMBfsFvxtprA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885649900</pqid></control><display><type>article</type><title>A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tania, Sheikh ; Karmakar, Gour ; Teng, Shyh Wei ; Murshed, Manzur</creator><creatorcontrib>Tania, Sheikh ; Karmakar, Gour ; Teng, Shyh Wei ; Murshed, Manzur</creatorcontrib><description>Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate different textures. Local texture descriptors are widely used in image segmentation as they comprise pixel-wise features. The Weber local descriptor (WLD) with differential excitation and gradient orientation components, inspired by Weber's Law, has been leveraged in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique. However, WLD has inherent drawbacks in the formulation of the components that limit its discriminatory capability. This paper introduces a novel texture descriptor by directly modelling the distribution of intensity-variation in the parametric space of the Weibull distribution using its shape and scale parameters. A unified 'joint scale' texture property is introduced, which can discriminate textures better than the individual parameters while keeping the length of the descriptor shorter. Additionally, the accuracy of WLD's gradient orientation component is improved by using an extended Sobel operator and expressing gradients in &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;[-\pi /2,\pi /2)&lt;/tex-math&gt;&lt;/inline-formula&gt; range. When incorporated in ICM, the proposed texture descriptor has consistently outperformed WLD and a recent enhancement with radial mean WLD (RM-WLD) on three benchmark datasets. It has also outperformed two other texture segmentation techniques and their deep learning based improvements.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3204220</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Feature extraction ; Histograms ; Image segmentation ; Iterative methods ; Local texture descriptor ; Mathematical models ; Operators (mathematics) ; Parameters ; Pixels ; Shape ; Texture ; the Sobel operator ; the Weibull distribution ; Visualization ; Weibull distribution</subject><ispartof>IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273</cites><orcidid>0000-0003-0347-3797 ; 0000-0001-7079-9717 ; 0000-0002-1308-7315 ; 0000-0002-1117-8563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9875965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Tania, Sheikh</creatorcontrib><creatorcontrib>Karmakar, Gour</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Murshed, Manzur</creatorcontrib><title>A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate different textures. Local texture descriptors are widely used in image segmentation as they comprise pixel-wise features. The Weber local descriptor (WLD) with differential excitation and gradient orientation components, inspired by Weber's Law, has been leveraged in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique. However, WLD has inherent drawbacks in the formulation of the components that limit its discriminatory capability. This paper introduces a novel texture descriptor by directly modelling the distribution of intensity-variation in the parametric space of the Weibull distribution using its shape and scale parameters. A unified 'joint scale' texture property is introduced, which can discriminate textures better than the individual parameters while keeping the length of the descriptor shorter. Additionally, the accuracy of WLD's gradient orientation component is improved by using an extended Sobel operator and expressing gradients in &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;[-\pi /2,\pi /2)&lt;/tex-math&gt;&lt;/inline-formula&gt; range. When incorporated in ICM, the proposed texture descriptor has consistently outperformed WLD and a recent enhancement with radial mean WLD (RM-WLD) on three benchmark datasets. It has also outperformed two other texture segmentation techniques and their deep learning based improvements.</description><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Iterative methods</subject><subject>Local texture descriptor</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Pixels</subject><subject>Shape</subject><subject>Texture</subject><subject>the Sobel operator</subject><subject>the Weibull distribution</subject><subject>Visualization</subject><subject>Weibull distribution</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ1-7mWFq_oEXRFo8hm81iyrZZkyzov3dri6cZZp53Bh6ErglMCAF5t1ouJxQonTAKnFI4QSMiOckAiuJ06AWFTFIC5-gixg0A4QKKEVpP8Zuv-pjwwhvd4pX9Tn2weG6jCa5LPmC3w-nT4lcd9Nam4Ax-77Sx2Dd_8w_rqr5t8dzFYVn1yfndJTprdBvt1bGO0frhfjV7yhYvj8-z6SIzlPOUCVkbXbFaNJIAlNIwCTlwoyVlpDY856K2oAUwRgtqZK0rUkEtqyanJacFG6Pbw90u-K_exqQ2vg-74aWiZSlyLiXAQMGBMsHHGGyjuuC2OvwoAmovTw3y1F6eOsobIjeHiLPW_uOyLITMBfsFvxtprA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Tania, Sheikh</creator><creator>Karmakar, Gour</creator><creator>Teng, Shyh Wei</creator><creator>Murshed, Manzur</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0347-3797</orcidid><orcidid>https://orcid.org/0000-0001-7079-9717</orcidid><orcidid>https://orcid.org/0000-0002-1308-7315</orcidid><orcidid>https://orcid.org/0000-0002-1117-8563</orcidid></search><sort><creationdate>20230101</creationdate><title>A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution</title><author>Tania, Sheikh ; Karmakar, Gour ; Teng, Shyh Wei ; Murshed, Manzur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Iterative methods</topic><topic>Local texture descriptor</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Pixels</topic><topic>Shape</topic><topic>Texture</topic><topic>the Sobel operator</topic><topic>the Weibull distribution</topic><topic>Visualization</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tania, Sheikh</creatorcontrib><creatorcontrib>Karmakar, Gour</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Murshed, Manzur</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tania, Sheikh</au><au>Karmakar, Gour</au><au>Teng, Shyh Wei</au><au>Murshed, Manzur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>25</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Research in texture feature approximation is still in the embryonic stage because of difficulties in developing a sound theoretical model to express the unique pattern in the intensity-variation of pixels in the neighbourhood of the pixel-of-interest so that it can sufficiently discriminate different textures. Local texture descriptors are widely used in image segmentation as they comprise pixel-wise features. The Weber local descriptor (WLD) with differential excitation and gradient orientation components, inspired by Weber's Law, has been leveraged in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique. However, WLD has inherent drawbacks in the formulation of the components that limit its discriminatory capability. This paper introduces a novel texture descriptor by directly modelling the distribution of intensity-variation in the parametric space of the Weibull distribution using its shape and scale parameters. A unified 'joint scale' texture property is introduced, which can discriminate textures better than the individual parameters while keeping the length of the descriptor shorter. Additionally, the accuracy of WLD's gradient orientation component is improved by using an extended Sobel operator and expressing gradients in &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;[-\pi /2,\pi /2)&lt;/tex-math&gt;&lt;/inline-formula&gt; range. When incorporated in ICM, the proposed texture descriptor has consistently outperformed WLD and a recent enhancement with radial mean WLD (RM-WLD) on three benchmark datasets. It has also outperformed two other texture segmentation techniques and their deep learning based improvements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3204220</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0347-3797</orcidid><orcidid>https://orcid.org/0000-0001-7079-9717</orcidid><orcidid>https://orcid.org/0000-0002-1308-7315</orcidid><orcidid>https://orcid.org/0000-0002-1117-8563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_9875965
source IEEE Electronic Library (IEL) Journals
subjects Computational modeling
Feature extraction
Histograms
Image segmentation
Iterative methods
Local texture descriptor
Mathematical models
Operators (mathematics)
Parameters
Pixels
Shape
Texture
the Sobel operator
the Weibull distribution
Visualization
Weibull distribution
title A Robust Local Texture Descriptor in the Parametric Space of the Weibull Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Local%20Texture%20Descriptor%20in%20the%20Parametric%20Space%20of%20the%20Weibull%20Distribution&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Tania,%20Sheikh&rft.date=2023-01-01&rft.volume=25&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3204220&rft_dat=%3Cproquest_ieee_%3E2885649900%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-59dcab3d5f910089c390604ca9231dc4645de0a5033272c9dab1b0d9bf6284273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885649900&rft_id=info:pmid/&rft_ieee_id=9875965&rfr_iscdi=true