Loading…

The normal inverse Gaussian distribution as a model for MUI

The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether...

Full description

Saved in:
Bibliographic Details
Main Authors: Salberg, A.-B., Swami, A., Oigard, T.A., Hanssen, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1488 vol.2
container_issue
container_start_page 1484
container_title
container_volume 2
creator Salberg, A.-B.
Swami, A.
Oigard, T.A.
Hanssen, A.
description The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether NIG models are appropriate models for multi-user interference. Finally, we empirically test the goodness of fit of squared-NIG models to tele-traffic data, which have been fitted with alpha-stable models.
doi_str_mv 10.1109/ACSSC.2001.987735
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_987735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>987735</ieee_id><sourcerecordid>987735</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9294988b2fdeb4e7a86fd08984dce5d97c0bed5c6419883baefee03eb04459fb3</originalsourceid><addsrcrecordid>eNotj8tKAzEUQIMPsK1-gK7yAzPePGaS4KoMthYqLtqCu5JMbjAyD0mmgn-vUFdnczhwCLlnUDIG5nHZ7HZNyQFYabRSorogM16puuACxCWZg9IgFJPq_YrMGFS6qIURN2Se8ycAB675jDztP5AOY-ptR-PwjSkjXdtTztEO1Mc8pehOUxwHajO1tB89djSMib4eNrfkOtgu490_F-Swet43L8X2bb1pltsiMsWnwnAjjdaOB49OorK6Dh600dK3WHmjWnDoq7aW7E8TzmJABIEOpKxMcGJBHs7diIjHrxR7m36O52fxC0muSSs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The normal inverse Gaussian distribution as a model for MUI</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salberg, A.-B. ; Swami, A. ; Oigard, T.A. ; Hanssen, A.</creator><creatorcontrib>Salberg, A.-B. ; Swami, A. ; Oigard, T.A. ; Hanssen, A.</creatorcontrib><description>The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether NIG models are appropriate models for multi-user interference. Finally, we empirically test the goodness of fit of squared-NIG models to tele-traffic data, which have been fitted with alpha-stable models.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 078037147X</identifier><identifier>ISBN: 9780780371477</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.2001.987735</identifier><language>eng</language><publisher>IEEE</publisher><subject>Gaussian distribution ; Hydrogen ; Interference ; Parameter estimation ; Performance analysis ; Physics ; Random variables ; Shape ; Tail ; Testing</subject><ispartof>Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256), 2001, Vol.2, p.1484-1488 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/987735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/987735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salberg, A.-B.</creatorcontrib><creatorcontrib>Swami, A.</creatorcontrib><creatorcontrib>Oigard, T.A.</creatorcontrib><creatorcontrib>Hanssen, A.</creatorcontrib><title>The normal inverse Gaussian distribution as a model for MUI</title><title>Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256)</title><addtitle>ACSSC</addtitle><description>The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether NIG models are appropriate models for multi-user interference. Finally, we empirically test the goodness of fit of squared-NIG models to tele-traffic data, which have been fitted with alpha-stable models.</description><subject>Gaussian distribution</subject><subject>Hydrogen</subject><subject>Interference</subject><subject>Parameter estimation</subject><subject>Performance analysis</subject><subject>Physics</subject><subject>Random variables</subject><subject>Shape</subject><subject>Tail</subject><subject>Testing</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>078037147X</isbn><isbn>9780780371477</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQIMPsK1-gK7yAzPePGaS4KoMthYqLtqCu5JMbjAyD0mmgn-vUFdnczhwCLlnUDIG5nHZ7HZNyQFYabRSorogM16puuACxCWZg9IgFJPq_YrMGFS6qIURN2Se8ycAB675jDztP5AOY-ptR-PwjSkjXdtTztEO1Mc8pehOUxwHajO1tB89djSMib4eNrfkOtgu490_F-Swet43L8X2bb1pltsiMsWnwnAjjdaOB49OorK6Dh600dK3WHmjWnDoq7aW7E8TzmJABIEOpKxMcGJBHs7diIjHrxR7m36O52fxC0muSSs</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Salberg, A.-B.</creator><creator>Swami, A.</creator><creator>Oigard, T.A.</creator><creator>Hanssen, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>The normal inverse Gaussian distribution as a model for MUI</title><author>Salberg, A.-B. ; Swami, A. ; Oigard, T.A. ; Hanssen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9294988b2fdeb4e7a86fd08984dce5d97c0bed5c6419883baefee03eb04459fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Gaussian distribution</topic><topic>Hydrogen</topic><topic>Interference</topic><topic>Parameter estimation</topic><topic>Performance analysis</topic><topic>Physics</topic><topic>Random variables</topic><topic>Shape</topic><topic>Tail</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Salberg, A.-B.</creatorcontrib><creatorcontrib>Swami, A.</creatorcontrib><creatorcontrib>Oigard, T.A.</creatorcontrib><creatorcontrib>Hanssen, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salberg, A.-B.</au><au>Swami, A.</au><au>Oigard, T.A.</au><au>Hanssen, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The normal inverse Gaussian distribution as a model for MUI</atitle><btitle>Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256)</btitle><stitle>ACSSC</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>1484</spage><epage>1488 vol.2</epage><pages>1484-1488 vol.2</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>078037147X</isbn><isbn>9780780371477</isbn><abstract>The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether NIG models are appropriate models for multi-user interference. Finally, we empirically test the goodness of fit of squared-NIG models to tele-traffic data, which have been fitted with alpha-stable models.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2001.987735</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256), 2001, Vol.2, p.1484-1488 vol.2
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_987735
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Gaussian distribution
Hydrogen
Interference
Parameter estimation
Performance analysis
Physics
Random variables
Shape
Tail
Testing
title The normal inverse Gaussian distribution as a model for MUI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20normal%20inverse%20Gaussian%20distribution%20as%20a%20model%20for%20MUI&rft.btitle=Conference%20Record%20of%20Thirty-Fifth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(Cat.No.01CH37256)&rft.au=Salberg,%20A.-B.&rft.date=2001&rft.volume=2&rft.spage=1484&rft.epage=1488%20vol.2&rft.pages=1484-1488%20vol.2&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=078037147X&rft.isbn_list=9780780371477&rft_id=info:doi/10.1109/ACSSC.2001.987735&rft_dat=%3Cieee_6IE%3E987735%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-9294988b2fdeb4e7a86fd08984dce5d97c0bed5c6419883baefee03eb04459fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=987735&rfr_iscdi=true