Loading…
The normal inverse Gaussian distribution as a model for MUI
The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1488 vol.2 |
container_issue | |
container_start_page | 1484 |
container_title | |
container_volume | 2 |
creator | Salberg, A.-B. Swami, A. Oigard, T.A. Hanssen, A. |
description | The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether NIG models are appropriate models for multi-user interference. Finally, we empirically test the goodness of fit of squared-NIG models to tele-traffic data, which have been fitted with alpha-stable models. |
doi_str_mv | 10.1109/ACSSC.2001.987735 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_987735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>987735</ieee_id><sourcerecordid>987735</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9294988b2fdeb4e7a86fd08984dce5d97c0bed5c6419883baefee03eb04459fb3</originalsourceid><addsrcrecordid>eNotj8tKAzEUQIMPsK1-gK7yAzPePGaS4KoMthYqLtqCu5JMbjAyD0mmgn-vUFdnczhwCLlnUDIG5nHZ7HZNyQFYabRSorogM16puuACxCWZg9IgFJPq_YrMGFS6qIURN2Se8ycAB675jDztP5AOY-ptR-PwjSkjXdtTztEO1Mc8pehOUxwHajO1tB89djSMib4eNrfkOtgu490_F-Swet43L8X2bb1pltsiMsWnwnAjjdaOB49OorK6Dh600dK3WHmjWnDoq7aW7E8TzmJABIEOpKxMcGJBHs7diIjHrxR7m36O52fxC0muSSs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The normal inverse Gaussian distribution as a model for MUI</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salberg, A.-B. ; Swami, A. ; Oigard, T.A. ; Hanssen, A.</creator><creatorcontrib>Salberg, A.-B. ; Swami, A. ; Oigard, T.A. ; Hanssen, A.</creatorcontrib><description>The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether NIG models are appropriate models for multi-user interference. Finally, we empirically test the goodness of fit of squared-NIG models to tele-traffic data, which have been fitted with alpha-stable models.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 078037147X</identifier><identifier>ISBN: 9780780371477</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.2001.987735</identifier><language>eng</language><publisher>IEEE</publisher><subject>Gaussian distribution ; Hydrogen ; Interference ; Parameter estimation ; Performance analysis ; Physics ; Random variables ; Shape ; Tail ; Testing</subject><ispartof>Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256), 2001, Vol.2, p.1484-1488 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/987735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/987735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salberg, A.-B.</creatorcontrib><creatorcontrib>Swami, A.</creatorcontrib><creatorcontrib>Oigard, T.A.</creatorcontrib><creatorcontrib>Hanssen, A.</creatorcontrib><title>The normal inverse Gaussian distribution as a model for MUI</title><title>Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256)</title><addtitle>ACSSC</addtitle><description>The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether NIG models are appropriate models for multi-user interference. Finally, we empirically test the goodness of fit of squared-NIG models to tele-traffic data, which have been fitted with alpha-stable models.</description><subject>Gaussian distribution</subject><subject>Hydrogen</subject><subject>Interference</subject><subject>Parameter estimation</subject><subject>Performance analysis</subject><subject>Physics</subject><subject>Random variables</subject><subject>Shape</subject><subject>Tail</subject><subject>Testing</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>078037147X</isbn><isbn>9780780371477</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQIMPsK1-gK7yAzPePGaS4KoMthYqLtqCu5JMbjAyD0mmgn-vUFdnczhwCLlnUDIG5nHZ7HZNyQFYabRSorogM16puuACxCWZg9IgFJPq_YrMGFS6qIURN2Se8ycAB675jDztP5AOY-ptR-PwjSkjXdtTztEO1Mc8pehOUxwHajO1tB89djSMib4eNrfkOtgu490_F-Swet43L8X2bb1pltsiMsWnwnAjjdaOB49OorK6Dh600dK3WHmjWnDoq7aW7E8TzmJABIEOpKxMcGJBHs7diIjHrxR7m36O52fxC0muSSs</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Salberg, A.-B.</creator><creator>Swami, A.</creator><creator>Oigard, T.A.</creator><creator>Hanssen, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>The normal inverse Gaussian distribution as a model for MUI</title><author>Salberg, A.-B. ; Swami, A. ; Oigard, T.A. ; Hanssen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9294988b2fdeb4e7a86fd08984dce5d97c0bed5c6419883baefee03eb04459fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Gaussian distribution</topic><topic>Hydrogen</topic><topic>Interference</topic><topic>Parameter estimation</topic><topic>Performance analysis</topic><topic>Physics</topic><topic>Random variables</topic><topic>Shape</topic><topic>Tail</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Salberg, A.-B.</creatorcontrib><creatorcontrib>Swami, A.</creatorcontrib><creatorcontrib>Oigard, T.A.</creatorcontrib><creatorcontrib>Hanssen, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salberg, A.-B.</au><au>Swami, A.</au><au>Oigard, T.A.</au><au>Hanssen, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The normal inverse Gaussian distribution as a model for MUI</atitle><btitle>Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256)</btitle><stitle>ACSSC</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>1484</spage><epage>1488 vol.2</epage><pages>1484-1488 vol.2</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>078037147X</isbn><isbn>9780780371477</isbn><abstract>The normal inverse Gaussian (NIG) distribution has previously been shown to be a versatile tool to model heavy-tailed processes. A cumulant-matching estimator of the NIG parameters was introduced in Oigard and Hansen (2001). Here, we analyze the performance of this estimator. Next, we study whether NIG models are appropriate models for multi-user interference. Finally, we empirically test the goodness of fit of squared-NIG models to tele-traffic data, which have been fitted with alpha-stable models.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2001.987735</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256), 2001, Vol.2, p.1484-1488 vol.2 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_987735 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Gaussian distribution Hydrogen Interference Parameter estimation Performance analysis Physics Random variables Shape Tail Testing |
title | The normal inverse Gaussian distribution as a model for MUI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20normal%20inverse%20Gaussian%20distribution%20as%20a%20model%20for%20MUI&rft.btitle=Conference%20Record%20of%20Thirty-Fifth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(Cat.No.01CH37256)&rft.au=Salberg,%20A.-B.&rft.date=2001&rft.volume=2&rft.spage=1484&rft.epage=1488%20vol.2&rft.pages=1484-1488%20vol.2&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=078037147X&rft.isbn_list=9780780371477&rft_id=info:doi/10.1109/ACSSC.2001.987735&rft_dat=%3Cieee_6IE%3E987735%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-9294988b2fdeb4e7a86fd08984dce5d97c0bed5c6419883baefee03eb04459fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=987735&rfr_iscdi=true |