Loading…

Write & Audit: Teaching Genre Features of Statistics Writing with a Student-Facing Text Analysis Tool

Based on a corpus analysis of writing data from undergraduate and graduate courses in statistics and data science at Carnegie Mellon, we have designed a computer-assisted course intervention for two writing projects in an introductory-level statistics course. Our approach uses DocuScope Write &...

Full description

Saved in:
Bibliographic Details
Main Authors: Laudenbach, Michael, Ishizaki, Suguru, Brown, David West
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 481
container_issue
container_start_page 476
container_title
container_volume
creator Laudenbach, Michael
Ishizaki, Suguru
Brown, David West
description Based on a corpus analysis of writing data from undergraduate and graduate courses in statistics and data science at Carnegie Mellon, we have designed a computer-assisted course intervention for two writing projects in an introductory-level statistics course. Our approach uses DocuScope Write & Audit (W&A), a text visualization software, which was designed to allow student writers to inspect both their topical organization and the rhetorical experiences they create. This short paper provides a brief overview of the corpus study, then outlines our design and expectations for a proposed workshop study that examines the effectiveness on our intervention.
doi_str_mv 10.1109/ProComm53155.2022.00097
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9881669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9881669</ieee_id><sourcerecordid>9881669</sourcerecordid><originalsourceid>FETCH-LOGICAL-i166t-8cdfb7e8beb3d136258871b4e9f168773f61eedfad81ff1e5f67014bc7b1f45c3</originalsourceid><addsrcrecordid>eNotjk1Lw0AYhFdBsNb-Ag_uyVvivtnsl7dSTBUKCkY8lk3yrl1pEslusf33JuhpYOaZYQi5BZYCMHP_OvSrvm0FByHSjGVZyhgz6oxcgZQiNwIUOyezDIROgLHskixC-BoZDtpoqWYEPwYfkd7R5aHx8YGWaOud7z7pGrsBaYE2HgYMtHf0LdroQ_R1oFNpgn583FE7JocGu5gUtp7cEo-RLju7PwUfaNn3-2ty4ew-4OJf5-S9eCxXT8nmZf28Wm4SP_6Nia4bVynUFVa8AS4zobWCKkfjQGqluJOA2DjbaHAOUDipGORVrSpwuaj5nNz87XpE3H4PvrXDaWu0HucN_wUrD1j7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Write &amp; Audit: Teaching Genre Features of Statistics Writing with a Student-Facing Text Analysis Tool</title><source>IEEE Xplore All Conference Series</source><creator>Laudenbach, Michael ; Ishizaki, Suguru ; Brown, David West</creator><creatorcontrib>Laudenbach, Michael ; Ishizaki, Suguru ; Brown, David West</creatorcontrib><description>Based on a corpus analysis of writing data from undergraduate and graduate courses in statistics and data science at Carnegie Mellon, we have designed a computer-assisted course intervention for two writing projects in an introductory-level statistics course. Our approach uses DocuScope Write &amp; Audit (W&amp;A), a text visualization software, which was designed to allow student writers to inspect both their topical organization and the rhetorical experiences they create. This short paper provides a brief overview of the corpus study, then outlines our design and expectations for a proposed workshop study that examines the effectiveness on our intervention.</description><identifier>EISSN: 2158-1002</identifier><identifier>EISBN: 1665495170</identifier><identifier>EISBN: 9781665495172</identifier><identifier>DOI: 10.1109/ProComm53155.2022.00097</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Corpus studies ; Data science ; Data visualization ; Education ; Organizations ; rhetoric-composition ; technology-enhanced learning ; Text analysis ; Writing ; writing pedagogy</subject><ispartof>2022 IEEE International Professional Communication Conference (ProComm), 2022, p.476-481</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9881669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9881669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laudenbach, Michael</creatorcontrib><creatorcontrib>Ishizaki, Suguru</creatorcontrib><creatorcontrib>Brown, David West</creatorcontrib><title>Write &amp; Audit: Teaching Genre Features of Statistics Writing with a Student-Facing Text Analysis Tool</title><title>2022 IEEE International Professional Communication Conference (ProComm)</title><addtitle>PROCOMM</addtitle><description>Based on a corpus analysis of writing data from undergraduate and graduate courses in statistics and data science at Carnegie Mellon, we have designed a computer-assisted course intervention for two writing projects in an introductory-level statistics course. Our approach uses DocuScope Write &amp; Audit (W&amp;A), a text visualization software, which was designed to allow student writers to inspect both their topical organization and the rhetorical experiences they create. This short paper provides a brief overview of the corpus study, then outlines our design and expectations for a proposed workshop study that examines the effectiveness on our intervention.</description><subject>Conferences</subject><subject>Corpus studies</subject><subject>Data science</subject><subject>Data visualization</subject><subject>Education</subject><subject>Organizations</subject><subject>rhetoric-composition</subject><subject>technology-enhanced learning</subject><subject>Text analysis</subject><subject>Writing</subject><subject>writing pedagogy</subject><issn>2158-1002</issn><isbn>1665495170</isbn><isbn>9781665495172</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk1Lw0AYhFdBsNb-Ag_uyVvivtnsl7dSTBUKCkY8lk3yrl1pEslusf33JuhpYOaZYQi5BZYCMHP_OvSrvm0FByHSjGVZyhgz6oxcgZQiNwIUOyezDIROgLHskixC-BoZDtpoqWYEPwYfkd7R5aHx8YGWaOud7z7pGrsBaYE2HgYMtHf0LdroQ_R1oFNpgn583FE7JocGu5gUtp7cEo-RLju7PwUfaNn3-2ty4ew-4OJf5-S9eCxXT8nmZf28Wm4SP_6Nia4bVynUFVa8AS4zobWCKkfjQGqluJOA2DjbaHAOUDipGORVrSpwuaj5nNz87XpE3H4PvrXDaWu0HucN_wUrD1j7</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Laudenbach, Michael</creator><creator>Ishizaki, Suguru</creator><creator>Brown, David West</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202207</creationdate><title>Write &amp; Audit: Teaching Genre Features of Statistics Writing with a Student-Facing Text Analysis Tool</title><author>Laudenbach, Michael ; Ishizaki, Suguru ; Brown, David West</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i166t-8cdfb7e8beb3d136258871b4e9f168773f61eedfad81ff1e5f67014bc7b1f45c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conferences</topic><topic>Corpus studies</topic><topic>Data science</topic><topic>Data visualization</topic><topic>Education</topic><topic>Organizations</topic><topic>rhetoric-composition</topic><topic>technology-enhanced learning</topic><topic>Text analysis</topic><topic>Writing</topic><topic>writing pedagogy</topic><toplevel>online_resources</toplevel><creatorcontrib>Laudenbach, Michael</creatorcontrib><creatorcontrib>Ishizaki, Suguru</creatorcontrib><creatorcontrib>Brown, David West</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laudenbach, Michael</au><au>Ishizaki, Suguru</au><au>Brown, David West</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Write &amp; Audit: Teaching Genre Features of Statistics Writing with a Student-Facing Text Analysis Tool</atitle><btitle>2022 IEEE International Professional Communication Conference (ProComm)</btitle><stitle>PROCOMM</stitle><date>2022-07</date><risdate>2022</risdate><spage>476</spage><epage>481</epage><pages>476-481</pages><eissn>2158-1002</eissn><eisbn>1665495170</eisbn><eisbn>9781665495172</eisbn><coden>IEEPAD</coden><abstract>Based on a corpus analysis of writing data from undergraduate and graduate courses in statistics and data science at Carnegie Mellon, we have designed a computer-assisted course intervention for two writing projects in an introductory-level statistics course. Our approach uses DocuScope Write &amp; Audit (W&amp;A), a text visualization software, which was designed to allow student writers to inspect both their topical organization and the rhetorical experiences they create. This short paper provides a brief overview of the corpus study, then outlines our design and expectations for a proposed workshop study that examines the effectiveness on our intervention.</abstract><pub>IEEE</pub><doi>10.1109/ProComm53155.2022.00097</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2158-1002
ispartof 2022 IEEE International Professional Communication Conference (ProComm), 2022, p.476-481
issn 2158-1002
language eng
recordid cdi_ieee_primary_9881669
source IEEE Xplore All Conference Series
subjects Conferences
Corpus studies
Data science
Data visualization
Education
Organizations
rhetoric-composition
technology-enhanced learning
Text analysis
Writing
writing pedagogy
title Write & Audit: Teaching Genre Features of Statistics Writing with a Student-Facing Text Analysis Tool
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Write%20&%20Audit:%20Teaching%20Genre%20Features%20of%20Statistics%20Writing%20with%20a%20Student-Facing%20Text%20Analysis%20Tool&rft.btitle=2022%20IEEE%20International%20Professional%20Communication%20Conference%20(ProComm)&rft.au=Laudenbach,%20Michael&rft.date=2022-07&rft.spage=476&rft.epage=481&rft.pages=476-481&rft.eissn=2158-1002&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ProComm53155.2022.00097&rft.eisbn=1665495170&rft.eisbn_list=9781665495172&rft_dat=%3Cieee_CHZPO%3E9881669%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i166t-8cdfb7e8beb3d136258871b4e9f168773f61eedfad81ff1e5f67014bc7b1f45c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9881669&rfr_iscdi=true