Loading…
A Study on the Best Way to Compress Natural Language Processing Models
Current research in Natural Language Processing shows a growing number of models extensively trained with large computational budgets. However, these models present computationally demanding requirements, preventing them from being deployed in devices with strict resource and response latency limita...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Antunes, Joao Pardal, Miguel L. Coheur, Luisa |
description | Current research in Natural Language Processing shows a growing number of models extensively trained with large computational budgets. However, these models present computationally demanding requirements, preventing them from being deployed in devices with strict resource and response latency limitations. In this paper, we apply state-of-the-art model compression techniques to create compact versions of several of these models. In order to evaluate whether the trade-off between model performance and budget is worthwhile, we evaluate them in terms of efficiency, model simplicity and environmental foot-print. We also present a brief comparison between uncompressed and compressed models when running in low-end hardware. |
doi_str_mv | 10.1109/FUZZ-IEEE55066.2022.9882595 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9882595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9882595</ieee_id><sourcerecordid>9882595</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1ef9044ddb4ed26853eb74ade6da618b0aa4cfd4bd7bf8db1dfebb22230744a43</originalsourceid><addsrcrecordid>eNotj09LwzAcQKMgOOc-gZeA59Zf0iRNjrO0Oqh_QIewy0iWX2ula0fTHvrtFdzpHR48eITcM4gZA_NQbHe7aJPnuZSgVMyB89hozaWRF2RlUs2UkkKlDOCSLJiUOhJpYq7JTQg_ABxAmgUp1vRjnPxM-46O30gfMYz0y8507GnWH08DhkBf7TgNtqWl7erJ1kjfh_7wJ5qupi-9xzbckqvKtgFXZy7Jtsg_s-eofHvaZOsyajgkY8SwMiCE906g50rLBF0qrEflrWLagbXiUHnhfOoq7R3zFTrHOU8gFcKKZEnu_rsNIu5PQ3O0w7w_bye_Tj5Otw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Study on the Best Way to Compress Natural Language Processing Models</title><source>IEEE Xplore All Conference Series</source><creator>Antunes, Joao ; Pardal, Miguel L. ; Coheur, Luisa</creator><creatorcontrib>Antunes, Joao ; Pardal, Miguel L. ; Coheur, Luisa</creatorcontrib><description>Current research in Natural Language Processing shows a growing number of models extensively trained with large computational budgets. However, these models present computationally demanding requirements, preventing them from being deployed in devices with strict resource and response latency limitations. In this paper, we apply state-of-the-art model compression techniques to create compact versions of several of these models. In order to evaluate whether the trade-off between model performance and budget is worthwhile, we evaluate them in terms of efficiency, model simplicity and environmental foot-print. We also present a brief comparison between uncompressed and compressed models when running in low-end hardware.</description><identifier>EISSN: 1558-4739</identifier><identifier>EISBN: 9781665467100</identifier><identifier>EISBN: 166546710X</identifier><identifier>DOI: 10.1109/FUZZ-IEEE55066.2022.9882595</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; environ-mental footprint ; Fuzzy systems ; Hardware ; model compression ; model evaluation ; Natural language processing ; Performance evaluation</subject><ispartof>2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2022, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9882595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9882595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Antunes, Joao</creatorcontrib><creatorcontrib>Pardal, Miguel L.</creatorcontrib><creatorcontrib>Coheur, Luisa</creatorcontrib><title>A Study on the Best Way to Compress Natural Language Processing Models</title><title>2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</title><addtitle>FUZZ-IEEE</addtitle><description>Current research in Natural Language Processing shows a growing number of models extensively trained with large computational budgets. However, these models present computationally demanding requirements, preventing them from being deployed in devices with strict resource and response latency limitations. In this paper, we apply state-of-the-art model compression techniques to create compact versions of several of these models. In order to evaluate whether the trade-off between model performance and budget is worthwhile, we evaluate them in terms of efficiency, model simplicity and environmental foot-print. We also present a brief comparison between uncompressed and compressed models when running in low-end hardware.</description><subject>Computational modeling</subject><subject>environ-mental footprint</subject><subject>Fuzzy systems</subject><subject>Hardware</subject><subject>model compression</subject><subject>model evaluation</subject><subject>Natural language processing</subject><subject>Performance evaluation</subject><issn>1558-4739</issn><isbn>9781665467100</isbn><isbn>166546710X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09LwzAcQKMgOOc-gZeA59Zf0iRNjrO0Oqh_QIewy0iWX2ula0fTHvrtFdzpHR48eITcM4gZA_NQbHe7aJPnuZSgVMyB89hozaWRF2RlUs2UkkKlDOCSLJiUOhJpYq7JTQg_ABxAmgUp1vRjnPxM-46O30gfMYz0y8507GnWH08DhkBf7TgNtqWl7erJ1kjfh_7wJ5qupi-9xzbckqvKtgFXZy7Jtsg_s-eofHvaZOsyajgkY8SwMiCE906g50rLBF0qrEflrWLagbXiUHnhfOoq7R3zFTrHOU8gFcKKZEnu_rsNIu5PQ3O0w7w_bye_Tj5Otw</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Antunes, Joao</creator><creator>Pardal, Miguel L.</creator><creator>Coheur, Luisa</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220718</creationdate><title>A Study on the Best Way to Compress Natural Language Processing Models</title><author>Antunes, Joao ; Pardal, Miguel L. ; Coheur, Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1ef9044ddb4ed26853eb74ade6da618b0aa4cfd4bd7bf8db1dfebb22230744a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>environ-mental footprint</topic><topic>Fuzzy systems</topic><topic>Hardware</topic><topic>model compression</topic><topic>model evaluation</topic><topic>Natural language processing</topic><topic>Performance evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Antunes, Joao</creatorcontrib><creatorcontrib>Pardal, Miguel L.</creatorcontrib><creatorcontrib>Coheur, Luisa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Antunes, Joao</au><au>Pardal, Miguel L.</au><au>Coheur, Luisa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Study on the Best Way to Compress Natural Language Processing Models</atitle><btitle>2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</btitle><stitle>FUZZ-IEEE</stitle><date>2022-07-18</date><risdate>2022</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>1558-4739</eissn><eisbn>9781665467100</eisbn><eisbn>166546710X</eisbn><abstract>Current research in Natural Language Processing shows a growing number of models extensively trained with large computational budgets. However, these models present computationally demanding requirements, preventing them from being deployed in devices with strict resource and response latency limitations. In this paper, we apply state-of-the-art model compression techniques to create compact versions of several of these models. In order to evaluate whether the trade-off between model performance and budget is worthwhile, we evaluate them in terms of efficiency, model simplicity and environmental foot-print. We also present a brief comparison between uncompressed and compressed models when running in low-end hardware.</abstract><pub>IEEE</pub><doi>10.1109/FUZZ-IEEE55066.2022.9882595</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1558-4739 |
ispartof | 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2022, p.1-8 |
issn | 1558-4739 |
language | eng |
recordid | cdi_ieee_primary_9882595 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling environ-mental footprint Fuzzy systems Hardware model compression model evaluation Natural language processing Performance evaluation |
title | A Study on the Best Way to Compress Natural Language Processing Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Study%20on%20the%20Best%20Way%20to%20Compress%20Natural%20Language%20Processing%20Models&rft.btitle=2022%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems%20(FUZZ-IEEE)&rft.au=Antunes,%20Joao&rft.date=2022-07-18&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=1558-4739&rft_id=info:doi/10.1109/FUZZ-IEEE55066.2022.9882595&rft.eisbn=9781665467100&rft.eisbn_list=166546710X&rft_dat=%3Cieee_CHZPO%3E9882595%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1ef9044ddb4ed26853eb74ade6da618b0aa4cfd4bd7bf8db1dfebb22230744a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9882595&rfr_iscdi=true |