Loading…

Density Adaptive Plane Segmentation from Long-Range Terrestrial Laser Scanning Data

Plane segmentation is a commonly used approach that extracts detailed building information from point cloud. However, the change of density is not obvious for mainstream research data. The buildings with different densities are difficult to be classified especially for TLS data of which scanning dis...

Full description

Saved in:
Bibliographic Details
Main Authors: An, Aobo, Chen, Maolin, Zhao, Lidu, Zhu, Hongzhou, Tang, Feifei
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7514
container_issue
container_start_page 7511
container_title
container_volume
creator An, Aobo
Chen, Maolin
Zhao, Lidu
Zhu, Hongzhou
Tang, Feifei
description Plane segmentation is a commonly used approach that extracts detailed building information from point cloud. However, the change of density is not obvious for mainstream research data. The buildings with different densities are difficult to be classified especially for TLS data of which scanning distance exceeds 500m, while neighborhood radius is the key factor to solve this problem. In this article, an approach for density adaptive plane segmentation is presented. Firstly, compared with methods based on fixed radius range, dynamic neighborhood radius is selected before plane segmentation to ensure that the objects with different densities can be identified and the dimensionality feature of each point can be computed. Then, an improved growing rule based on dimensionality feature is applied to segment the buildings into planes. The experimental results show that the proposed method can efficiently extract planes from long-range TLS data, the precision reaches 95%, the recall reaches 92%.
doi_str_mv 10.1109/IGARSS46834.2022.9884779
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9884779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9884779</ieee_id><sourcerecordid>9884779</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-8d942b203a641bc769d460e80570db95c4888db1d2d14d5612b558e3c98f0b283</originalsourceid><addsrcrecordid>eNotkM1qAjEYANNCodb6BL3kBXab_3w5irZWWGhx7Vmym88lRaNkQ8G3r1BPM6c5DCGUs5pz5l7Xq_mmbZUBqWrBhKgdgLLW3ZGZs8CN0UpYJ9g9mQiuZWUZk4_kaRx_rgKCsQlpl5jGWC50Hvy5xF-kXwefkLY4HDEVX-Ip0X0-HWlzSkO18WlAusWccSw5-gNt_IiZtr1PKaaBLn3xz-Rh7w8jzm6cku_3t-3io2o-V-vFvKmiYLJUEJwS3VW9UbzrrXFBGYbAtGWhc7pXABA6HkTgKmjDRac1oOwd7FknQE7Jy383IuLunOPR58vu9kD-ARUUUSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Density Adaptive Plane Segmentation from Long-Range Terrestrial Laser Scanning Data</title><source>IEEE Xplore All Conference Series</source><creator>An, Aobo ; Chen, Maolin ; Zhao, Lidu ; Zhu, Hongzhou ; Tang, Feifei</creator><creatorcontrib>An, Aobo ; Chen, Maolin ; Zhao, Lidu ; Zhu, Hongzhou ; Tang, Feifei</creatorcontrib><description>Plane segmentation is a commonly used approach that extracts detailed building information from point cloud. However, the change of density is not obvious for mainstream research data. The buildings with different densities are difficult to be classified especially for TLS data of which scanning distance exceeds 500m, while neighborhood radius is the key factor to solve this problem. In this article, an approach for density adaptive plane segmentation is presented. Firstly, compared with methods based on fixed radius range, dynamic neighborhood radius is selected before plane segmentation to ensure that the objects with different densities can be identified and the dimensionality feature of each point can be computed. Then, an improved growing rule based on dimensionality feature is applied to segment the buildings into planes. The experimental results show that the proposed method can efficiently extract planes from long-range TLS data, the precision reaches 95%, the recall reaches 92%.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781665427920</identifier><identifier>EISBN: 1665427922</identifier><identifier>DOI: 10.1109/IGARSS46834.2022.9884779</identifier><language>eng</language><publisher>IEEE</publisher><subject>dimensionality feature ; dynamic neighborhood radius ; long-range TLS data ; plane segmentation ; region growing</subject><ispartof>IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022, p.7511-7514</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9884779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9884779$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>An, Aobo</creatorcontrib><creatorcontrib>Chen, Maolin</creatorcontrib><creatorcontrib>Zhao, Lidu</creatorcontrib><creatorcontrib>Zhu, Hongzhou</creatorcontrib><creatorcontrib>Tang, Feifei</creatorcontrib><title>Density Adaptive Plane Segmentation from Long-Range Terrestrial Laser Scanning Data</title><title>IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Plane segmentation is a commonly used approach that extracts detailed building information from point cloud. However, the change of density is not obvious for mainstream research data. The buildings with different densities are difficult to be classified especially for TLS data of which scanning distance exceeds 500m, while neighborhood radius is the key factor to solve this problem. In this article, an approach for density adaptive plane segmentation is presented. Firstly, compared with methods based on fixed radius range, dynamic neighborhood radius is selected before plane segmentation to ensure that the objects with different densities can be identified and the dimensionality feature of each point can be computed. Then, an improved growing rule based on dimensionality feature is applied to segment the buildings into planes. The experimental results show that the proposed method can efficiently extract planes from long-range TLS data, the precision reaches 95%, the recall reaches 92%.</description><subject>dimensionality feature</subject><subject>dynamic neighborhood radius</subject><subject>long-range TLS data</subject><subject>plane segmentation</subject><subject>region growing</subject><issn>2153-7003</issn><isbn>9781665427920</isbn><isbn>1665427922</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1qAjEYANNCodb6BL3kBXab_3w5irZWWGhx7Vmym88lRaNkQ8G3r1BPM6c5DCGUs5pz5l7Xq_mmbZUBqWrBhKgdgLLW3ZGZs8CN0UpYJ9g9mQiuZWUZk4_kaRx_rgKCsQlpl5jGWC50Hvy5xF-kXwefkLY4HDEVX-Ip0X0-HWlzSkO18WlAusWccSw5-gNt_IiZtr1PKaaBLn3xz-Rh7w8jzm6cku_3t-3io2o-V-vFvKmiYLJUEJwS3VW9UbzrrXFBGYbAtGWhc7pXABA6HkTgKmjDRac1oOwd7FknQE7Jy383IuLunOPR58vu9kD-ARUUUSw</recordid><startdate>20220717</startdate><enddate>20220717</enddate><creator>An, Aobo</creator><creator>Chen, Maolin</creator><creator>Zhao, Lidu</creator><creator>Zhu, Hongzhou</creator><creator>Tang, Feifei</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220717</creationdate><title>Density Adaptive Plane Segmentation from Long-Range Terrestrial Laser Scanning Data</title><author>An, Aobo ; Chen, Maolin ; Zhao, Lidu ; Zhu, Hongzhou ; Tang, Feifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-8d942b203a641bc769d460e80570db95c4888db1d2d14d5612b558e3c98f0b283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>dimensionality feature</topic><topic>dynamic neighborhood radius</topic><topic>long-range TLS data</topic><topic>plane segmentation</topic><topic>region growing</topic><toplevel>online_resources</toplevel><creatorcontrib>An, Aobo</creatorcontrib><creatorcontrib>Chen, Maolin</creatorcontrib><creatorcontrib>Zhao, Lidu</creatorcontrib><creatorcontrib>Zhu, Hongzhou</creatorcontrib><creatorcontrib>Tang, Feifei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>An, Aobo</au><au>Chen, Maolin</au><au>Zhao, Lidu</au><au>Zhu, Hongzhou</au><au>Tang, Feifei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Density Adaptive Plane Segmentation from Long-Range Terrestrial Laser Scanning Data</atitle><btitle>IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2022-07-17</date><risdate>2022</risdate><spage>7511</spage><epage>7514</epage><pages>7511-7514</pages><eissn>2153-7003</eissn><eisbn>9781665427920</eisbn><eisbn>1665427922</eisbn><abstract>Plane segmentation is a commonly used approach that extracts detailed building information from point cloud. However, the change of density is not obvious for mainstream research data. The buildings with different densities are difficult to be classified especially for TLS data of which scanning distance exceeds 500m, while neighborhood radius is the key factor to solve this problem. In this article, an approach for density adaptive plane segmentation is presented. Firstly, compared with methods based on fixed radius range, dynamic neighborhood radius is selected before plane segmentation to ensure that the objects with different densities can be identified and the dimensionality feature of each point can be computed. Then, an improved growing rule based on dimensionality feature is applied to segment the buildings into planes. The experimental results show that the proposed method can efficiently extract planes from long-range TLS data, the precision reaches 95%, the recall reaches 92%.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS46834.2022.9884779</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022, p.7511-7514
issn 2153-7003
language eng
recordid cdi_ieee_primary_9884779
source IEEE Xplore All Conference Series
subjects dimensionality feature
dynamic neighborhood radius
long-range TLS data
plane segmentation
region growing
title Density Adaptive Plane Segmentation from Long-Range Terrestrial Laser Scanning Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Density%20Adaptive%20Plane%20Segmentation%20from%20Long-Range%20Terrestrial%20Laser%20Scanning%20Data&rft.btitle=IGARSS%202022%20-%202022%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=An,%20Aobo&rft.date=2022-07-17&rft.spage=7511&rft.epage=7514&rft.pages=7511-7514&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS46834.2022.9884779&rft.eisbn=9781665427920&rft.eisbn_list=1665427922&rft_dat=%3Cieee_CHZPO%3E9884779%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-8d942b203a641bc769d460e80570db95c4888db1d2d14d5612b558e3c98f0b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9884779&rfr_iscdi=true