Loading…
Graph Neural Network and Superpixel Based Brain Tissue Segmentation
Convolutional neural networks (CNNs) are usually used as a backbone to design methods in biomedical image segmentation. However, the limitation of receptive field and large number of parameters limit the performance of these methods. In this paper, we propose a graph neural network (GNN) based metho...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 08 |
container_issue | |
container_start_page | 01 |
container_title | |
container_volume | |
creator | Wu, Chong Feng, Zhenan Zhang, Houwang Yan, Hong |
description | Convolutional neural networks (CNNs) are usually used as a backbone to design methods in biomedical image segmentation. However, the limitation of receptive field and large number of parameters limit the performance of these methods. In this paper, we propose a graph neural network (GNN) based method named GNN-SEG for the segmentation of brain tissues. Different to conventional CNN based methods, GNN-SEG takes superpixels as basic processing units and uses GNNs to learn the structure of brain tissues. Besides, inspired by the interaction mechanism in biological vision systems, we propose two kinds of interaction modules for feature enhancement and integration. In the experiments, we compared GNN-SEG with state-of-the-art CNN based methods on four datasets of brain magnetic resonance images. The experimental results show the superiority of GNN-SEG. |
doi_str_mv | 10.1109/IJCNN55064.2022.9892580 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9892580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9892580</ieee_id><sourcerecordid>9892580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-e1f23464157854ad4bad417f4584e49f01a766e49c7e72c6ead79c744dd95d8a3</originalsourceid><addsrcrecordid>eNotj8tOwzAUBQ0SEm3hC1jgH0jw4_q1pBGUoiosWtaVqW_A0KaRnQj4eyLRxdHMaqRDyC1nJefM3S2fq7pWimkoBROidNYJZdkZmXIjLLfacDgnE8E1LwCYuSTTnD8ZE9I5OSHVIvnug9Y4JL8f0X8f0xf1baDrocPUxR_c07nPGOg8-djSTcx5QLrG9wO2ve_jsb0iF43fZ7w-cUZeHx821VOxelksq_tVEQWTfYG8ERI0cGWsAh_gbRw3DSgLCK5h3ButR9sZNGKn0QczOkAITgXr5Yzc_HcjIm67FA8-_W5Ph-UfVvRK-A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Graph Neural Network and Superpixel Based Brain Tissue Segmentation</title><source>IEEE Xplore All Conference Series</source><creator>Wu, Chong ; Feng, Zhenan ; Zhang, Houwang ; Yan, Hong</creator><creatorcontrib>Wu, Chong ; Feng, Zhenan ; Zhang, Houwang ; Yan, Hong</creatorcontrib><description>Convolutional neural networks (CNNs) are usually used as a backbone to design methods in biomedical image segmentation. However, the limitation of receptive field and large number of parameters limit the performance of these methods. In this paper, we propose a graph neural network (GNN) based method named GNN-SEG for the segmentation of brain tissues. Different to conventional CNN based methods, GNN-SEG takes superpixels as basic processing units and uses GNNs to learn the structure of brain tissues. Besides, inspired by the interaction mechanism in biological vision systems, we propose two kinds of interaction modules for feature enhancement and integration. In the experiments, we compared GNN-SEG with state-of-the-art CNN based methods on four datasets of brain magnetic resonance images. The experimental results show the superiority of GNN-SEG.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1728186714</identifier><identifier>EISBN: 9781728186719</identifier><identifier>DOI: 10.1109/IJCNN55064.2022.9892580</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain tissue segmentation ; Graph neural network ; Interaction mechanism ; Superpixel</subject><ispartof>2022 International Joint Conference on Neural Networks (IJCNN), 2022, p.01-08</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9892580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9892580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Chong</creatorcontrib><creatorcontrib>Feng, Zhenan</creatorcontrib><creatorcontrib>Zhang, Houwang</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><title>Graph Neural Network and Superpixel Based Brain Tissue Segmentation</title><title>2022 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Convolutional neural networks (CNNs) are usually used as a backbone to design methods in biomedical image segmentation. However, the limitation of receptive field and large number of parameters limit the performance of these methods. In this paper, we propose a graph neural network (GNN) based method named GNN-SEG for the segmentation of brain tissues. Different to conventional CNN based methods, GNN-SEG takes superpixels as basic processing units and uses GNNs to learn the structure of brain tissues. Besides, inspired by the interaction mechanism in biological vision systems, we propose two kinds of interaction modules for feature enhancement and integration. In the experiments, we compared GNN-SEG with state-of-the-art CNN based methods on four datasets of brain magnetic resonance images. The experimental results show the superiority of GNN-SEG.</description><subject>Brain tissue segmentation</subject><subject>Graph neural network</subject><subject>Interaction mechanism</subject><subject>Superpixel</subject><issn>2161-4407</issn><isbn>1728186714</isbn><isbn>9781728186719</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAUBQ0SEm3hC1jgH0jw4_q1pBGUoiosWtaVqW_A0KaRnQj4eyLRxdHMaqRDyC1nJefM3S2fq7pWimkoBROidNYJZdkZmXIjLLfacDgnE8E1LwCYuSTTnD8ZE9I5OSHVIvnug9Y4JL8f0X8f0xf1baDrocPUxR_c07nPGOg8-djSTcx5QLrG9wO2ve_jsb0iF43fZ7w-cUZeHx821VOxelksq_tVEQWTfYG8ERI0cGWsAh_gbRw3DSgLCK5h3ButR9sZNGKn0QczOkAITgXr5Yzc_HcjIm67FA8-_W5Ph-UfVvRK-A</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Wu, Chong</creator><creator>Feng, Zhenan</creator><creator>Zhang, Houwang</creator><creator>Yan, Hong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220718</creationdate><title>Graph Neural Network and Superpixel Based Brain Tissue Segmentation</title><author>Wu, Chong ; Feng, Zhenan ; Zhang, Houwang ; Yan, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-e1f23464157854ad4bad417f4584e49f01a766e49c7e72c6ead79c744dd95d8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain tissue segmentation</topic><topic>Graph neural network</topic><topic>Interaction mechanism</topic><topic>Superpixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chong</creatorcontrib><creatorcontrib>Feng, Zhenan</creatorcontrib><creatorcontrib>Zhang, Houwang</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Chong</au><au>Feng, Zhenan</au><au>Zhang, Houwang</au><au>Yan, Hong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Graph Neural Network and Superpixel Based Brain Tissue Segmentation</atitle><btitle>2022 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2022-07-18</date><risdate>2022</risdate><spage>01</spage><epage>08</epage><pages>01-08</pages><eissn>2161-4407</eissn><eisbn>1728186714</eisbn><eisbn>9781728186719</eisbn><abstract>Convolutional neural networks (CNNs) are usually used as a backbone to design methods in biomedical image segmentation. However, the limitation of receptive field and large number of parameters limit the performance of these methods. In this paper, we propose a graph neural network (GNN) based method named GNN-SEG for the segmentation of brain tissues. Different to conventional CNN based methods, GNN-SEG takes superpixels as basic processing units and uses GNNs to learn the structure of brain tissues. Besides, inspired by the interaction mechanism in biological vision systems, we propose two kinds of interaction modules for feature enhancement and integration. In the experiments, we compared GNN-SEG with state-of-the-art CNN based methods on four datasets of brain magnetic resonance images. The experimental results show the superiority of GNN-SEG.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN55064.2022.9892580</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-4407 |
ispartof | 2022 International Joint Conference on Neural Networks (IJCNN), 2022, p.01-08 |
issn | 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_9892580 |
source | IEEE Xplore All Conference Series |
subjects | Brain tissue segmentation Graph neural network Interaction mechanism Superpixel |
title | Graph Neural Network and Superpixel Based Brain Tissue Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Graph%20Neural%20Network%20and%20Superpixel%20Based%20Brain%20Tissue%20Segmentation&rft.btitle=2022%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Wu,%20Chong&rft.date=2022-07-18&rft.spage=01&rft.epage=08&rft.pages=01-08&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN55064.2022.9892580&rft.eisbn=1728186714&rft.eisbn_list=9781728186719&rft_dat=%3Cieee_CHZPO%3E9892580%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-e1f23464157854ad4bad417f4584e49f01a766e49c7e72c6ead79c744dd95d8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9892580&rfr_iscdi=true |