Loading…
Convolutional Neural Networks for Time-dependent Classification of Variable-length Time Series
Time series data are often obtained only within a limited time range due to interruptions during observation process. To classify such partial time series, we need to account for 1) the variable-length data drawn from 2) different timestamps. To address the first problem, existing convolutional neur...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sawada, Azusa Miyagawa, Taiki Ebihara, Akinori Yachida, Shoji Hosoi, Toshinori |
description | Time series data are often obtained only within a limited time range due to interruptions during observation process. To classify such partial time series, we need to account for 1) the variable-length data drawn from 2) different timestamps. To address the first problem, existing convolutional neural networks use global pooling after convolutional layers to cancel the length differences. This architecture suffers from the trade-off between incorporating entire temporal correlations in long data and avoiding feature collapse for short data. To resolve this trade-off, we propose Adaptive Multi-scale Pooling, which aggregates features from an adaptive number of layers, i.e., only the first few layers for short data and more layers for long data. Furthermore, to address the second problem, we introduce Temporal Encoding, which embeds the observation timestamps into the intermediate features. Experiments on our private dataset and the UCR/UEA time series archive show that our modules improve classification accuracy especially on short data obtained as partial time series. |
doi_str_mv | 10.1109/IJCNN55064.2022.9892605 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9892605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9892605</ieee_id><sourcerecordid>9892605</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5ba8461a8b710df98785eb78d96744a15c36bab648bdd149e69f9b47281145f43</originalsourceid><addsrcrecordid>eNotkM1OAjEURquJiYA-gQv7AoO9nf4uzUQFQ8aF6FLSMrdaHWZIO2h8ewOyOqvzJecj5BrYFIDZm_ljVddSMiWmnHE-tcZyxeQJGYPmBozSIE7JiIOCQgimz8k450_GeGltOSJvVd999-1uiH3nWlrjLh0w_PTpK9PQJ7qMGywa3GLXYDfQqnU5xxDXbu_QPtBXl6LzLRYtdu_Dx0Ggz5gi5gtyFlyb8fLICXm5v1tWs2Lx9DCvbhdF5KwcCumdEQqc8RpYE6zRRqLXprFKC-FArkvlnVfC-KYBYVHZYL3YB4KQQZQTcvW_GxFxtU1x49Lv6vhF-Qe_3lUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convolutional Neural Networks for Time-dependent Classification of Variable-length Time Series</title><source>IEEE Xplore All Conference Series</source><creator>Sawada, Azusa ; Miyagawa, Taiki ; Ebihara, Akinori ; Yachida, Shoji ; Hosoi, Toshinori</creator><creatorcontrib>Sawada, Azusa ; Miyagawa, Taiki ; Ebihara, Akinori ; Yachida, Shoji ; Hosoi, Toshinori</creatorcontrib><description>Time series data are often obtained only within a limited time range due to interruptions during observation process. To classify such partial time series, we need to account for 1) the variable-length data drawn from 2) different timestamps. To address the first problem, existing convolutional neural networks use global pooling after convolutional layers to cancel the length differences. This architecture suffers from the trade-off between incorporating entire temporal correlations in long data and avoiding feature collapse for short data. To resolve this trade-off, we propose Adaptive Multi-scale Pooling, which aggregates features from an adaptive number of layers, i.e., only the first few layers for short data and more layers for long data. Furthermore, to address the second problem, we introduce Temporal Encoding, which embeds the observation timestamps into the intermediate features. Experiments on our private dataset and the UCR/UEA time series archive show that our modules improve classification accuracy especially on short data obtained as partial time series.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1728186714</identifier><identifier>EISBN: 9781728186719</identifier><identifier>DOI: 10.1109/IJCNN55064.2022.9892605</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; convolutional neural networks ; Correlation ; Encoding ; Neural networks ; partial data ; Radio frequency ; Time series analysis ; time series classification ; Trajectory ; variable length</subject><ispartof>2022 International Joint Conference on Neural Networks (IJCNN), 2022, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9892605$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9892605$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sawada, Azusa</creatorcontrib><creatorcontrib>Miyagawa, Taiki</creatorcontrib><creatorcontrib>Ebihara, Akinori</creatorcontrib><creatorcontrib>Yachida, Shoji</creatorcontrib><creatorcontrib>Hosoi, Toshinori</creatorcontrib><title>Convolutional Neural Networks for Time-dependent Classification of Variable-length Time Series</title><title>2022 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Time series data are often obtained only within a limited time range due to interruptions during observation process. To classify such partial time series, we need to account for 1) the variable-length data drawn from 2) different timestamps. To address the first problem, existing convolutional neural networks use global pooling after convolutional layers to cancel the length differences. This architecture suffers from the trade-off between incorporating entire temporal correlations in long data and avoiding feature collapse for short data. To resolve this trade-off, we propose Adaptive Multi-scale Pooling, which aggregates features from an adaptive number of layers, i.e., only the first few layers for short data and more layers for long data. Furthermore, to address the second problem, we introduce Temporal Encoding, which embeds the observation timestamps into the intermediate features. Experiments on our private dataset and the UCR/UEA time series archive show that our modules improve classification accuracy especially on short data obtained as partial time series.</description><subject>Aggregates</subject><subject>convolutional neural networks</subject><subject>Correlation</subject><subject>Encoding</subject><subject>Neural networks</subject><subject>partial data</subject><subject>Radio frequency</subject><subject>Time series analysis</subject><subject>time series classification</subject><subject>Trajectory</subject><subject>variable length</subject><issn>2161-4407</issn><isbn>1728186714</isbn><isbn>9781728186719</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OAjEURquJiYA-gQv7AoO9nf4uzUQFQ8aF6FLSMrdaHWZIO2h8ewOyOqvzJecj5BrYFIDZm_ljVddSMiWmnHE-tcZyxeQJGYPmBozSIE7JiIOCQgimz8k450_GeGltOSJvVd999-1uiH3nWlrjLh0w_PTpK9PQJ7qMGywa3GLXYDfQqnU5xxDXbu_QPtBXl6LzLRYtdu_Dx0Ggz5gi5gtyFlyb8fLICXm5v1tWs2Lx9DCvbhdF5KwcCumdEQqc8RpYE6zRRqLXprFKC-FArkvlnVfC-KYBYVHZYL3YB4KQQZQTcvW_GxFxtU1x49Lv6vhF-Qe_3lUw</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Sawada, Azusa</creator><creator>Miyagawa, Taiki</creator><creator>Ebihara, Akinori</creator><creator>Yachida, Shoji</creator><creator>Hosoi, Toshinori</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220718</creationdate><title>Convolutional Neural Networks for Time-dependent Classification of Variable-length Time Series</title><author>Sawada, Azusa ; Miyagawa, Taiki ; Ebihara, Akinori ; Yachida, Shoji ; Hosoi, Toshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5ba8461a8b710df98785eb78d96744a15c36bab648bdd149e69f9b47281145f43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregates</topic><topic>convolutional neural networks</topic><topic>Correlation</topic><topic>Encoding</topic><topic>Neural networks</topic><topic>partial data</topic><topic>Radio frequency</topic><topic>Time series analysis</topic><topic>time series classification</topic><topic>Trajectory</topic><topic>variable length</topic><toplevel>online_resources</toplevel><creatorcontrib>Sawada, Azusa</creatorcontrib><creatorcontrib>Miyagawa, Taiki</creatorcontrib><creatorcontrib>Ebihara, Akinori</creatorcontrib><creatorcontrib>Yachida, Shoji</creatorcontrib><creatorcontrib>Hosoi, Toshinori</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sawada, Azusa</au><au>Miyagawa, Taiki</au><au>Ebihara, Akinori</au><au>Yachida, Shoji</au><au>Hosoi, Toshinori</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convolutional Neural Networks for Time-dependent Classification of Variable-length Time Series</atitle><btitle>2022 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2022-07-18</date><risdate>2022</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2161-4407</eissn><eisbn>1728186714</eisbn><eisbn>9781728186719</eisbn><abstract>Time series data are often obtained only within a limited time range due to interruptions during observation process. To classify such partial time series, we need to account for 1) the variable-length data drawn from 2) different timestamps. To address the first problem, existing convolutional neural networks use global pooling after convolutional layers to cancel the length differences. This architecture suffers from the trade-off between incorporating entire temporal correlations in long data and avoiding feature collapse for short data. To resolve this trade-off, we propose Adaptive Multi-scale Pooling, which aggregates features from an adaptive number of layers, i.e., only the first few layers for short data and more layers for long data. Furthermore, to address the second problem, we introduce Temporal Encoding, which embeds the observation timestamps into the intermediate features. Experiments on our private dataset and the UCR/UEA time series archive show that our modules improve classification accuracy especially on short data obtained as partial time series.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN55064.2022.9892605</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-4407 |
ispartof | 2022 International Joint Conference on Neural Networks (IJCNN), 2022, p.1-8 |
issn | 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_9892605 |
source | IEEE Xplore All Conference Series |
subjects | Aggregates convolutional neural networks Correlation Encoding Neural networks partial data Radio frequency Time series analysis time series classification Trajectory variable length |
title | Convolutional Neural Networks for Time-dependent Classification of Variable-length Time Series |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convolutional%20Neural%20Networks%20for%20Time-dependent%20Classification%20of%20Variable-length%20Time%20Series&rft.btitle=2022%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Sawada,%20Azusa&rft.date=2022-07-18&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN55064.2022.9892605&rft.eisbn=1728186714&rft.eisbn_list=9781728186719&rft_dat=%3Cieee_CHZPO%3E9892605%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-5ba8461a8b710df98785eb78d96744a15c36bab648bdd149e69f9b47281145f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9892605&rfr_iscdi=true |