Loading…

Open World Learning Graph Convolution for Latency Estimation in Routing Networks

Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin, Yifei, Daoutis, Marios, Girdzijauskas, Sarunas, Gionis, Aristides
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Jin, Yifei
Daoutis, Marios
Girdzijauskas, Sarunas
Gionis, Aristides
description Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.
doi_str_mv 10.1109/IJCNN55064.2022.9892952
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9892952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9892952</ieee_id><sourcerecordid>9892952</sourcerecordid><originalsourceid>FETCH-LOGICAL-i290t-4f2b6aa7c6f7cdc44e23a1a3ce2205071f13e75386c4a20291ad720b28829b0e3</originalsourceid><addsrcrecordid>eNotj91KwzAcxaMguE2fwAvzAp3JP2k-LqXMbVI6EcXLkaapRmtS0qrs7S26qwOHcw7nh9A1JUtKib7Z3hdVledE8CUQgKVWGnQOJ2hOJSiqhKT8FM2ACppxTuQ5mg_DOyHAtGYz9LDrXcAvMXUNLp1JwYdXvE6mf8NFDN-x-xp9DLiNCZdmdMEe8GoY_af5s33Aj3FKTJ3KjT8xfQwX6Kw13eAuj7pAz3erp2KTlbv1trgtMw-ajBlvoRbGSCtaaRvLuQNmqGHWAZCcSNpS5mTOlLDcTGCamkYCqUEp0DVxbIGu_ne9c27fp-lSOuyP9OwXPoZP4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Open World Learning Graph Convolution for Latency Estimation in Routing Networks</title><source>IEEE Xplore All Conference Series</source><creator>Jin, Yifei ; Daoutis, Marios ; Girdzijauskas, Sarunas ; Gionis, Aristides</creator><creatorcontrib>Jin, Yifei ; Daoutis, Marios ; Girdzijauskas, Sarunas ; Gionis, Aristides</creatorcontrib><description>Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1728186714</identifier><identifier>EISBN: 9781728186719</identifier><identifier>DOI: 10.1109/IJCNN55064.2022.9892952</identifier><language>eng</language><publisher>IEEE</publisher><subject>Graph Convolution ; Open World Learning ; Software Define Networks</subject><ispartof>2022 International Joint Conference on Neural Networks (IJCNN), 2022, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9892952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9892952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Yifei</creatorcontrib><creatorcontrib>Daoutis, Marios</creatorcontrib><creatorcontrib>Girdzijauskas, Sarunas</creatorcontrib><creatorcontrib>Gionis, Aristides</creatorcontrib><title>Open World Learning Graph Convolution for Latency Estimation in Routing Networks</title><title>2022 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.</description><subject>Graph Convolution</subject><subject>Open World Learning</subject><subject>Software Define Networks</subject><issn>2161-4407</issn><isbn>1728186714</isbn><isbn>9781728186719</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KwzAcxaMguE2fwAvzAp3JP2k-LqXMbVI6EcXLkaapRmtS0qrs7S26qwOHcw7nh9A1JUtKib7Z3hdVledE8CUQgKVWGnQOJ2hOJSiqhKT8FM2ACppxTuQ5mg_DOyHAtGYz9LDrXcAvMXUNLp1JwYdXvE6mf8NFDN-x-xp9DLiNCZdmdMEe8GoY_af5s33Aj3FKTJ3KjT8xfQwX6Kw13eAuj7pAz3erp2KTlbv1trgtMw-ajBlvoRbGSCtaaRvLuQNmqGHWAZCcSNpS5mTOlLDcTGCamkYCqUEp0DVxbIGu_ne9c27fp-lSOuyP9OwXPoZP4Q</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Jin, Yifei</creator><creator>Daoutis, Marios</creator><creator>Girdzijauskas, Sarunas</creator><creator>Gionis, Aristides</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220718</creationdate><title>Open World Learning Graph Convolution for Latency Estimation in Routing Networks</title><author>Jin, Yifei ; Daoutis, Marios ; Girdzijauskas, Sarunas ; Gionis, Aristides</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i290t-4f2b6aa7c6f7cdc44e23a1a3ce2205071f13e75386c4a20291ad720b28829b0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graph Convolution</topic><topic>Open World Learning</topic><topic>Software Define Networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yifei</creatorcontrib><creatorcontrib>Daoutis, Marios</creatorcontrib><creatorcontrib>Girdzijauskas, Sarunas</creatorcontrib><creatorcontrib>Gionis, Aristides</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Yifei</au><au>Daoutis, Marios</au><au>Girdzijauskas, Sarunas</au><au>Gionis, Aristides</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Open World Learning Graph Convolution for Latency Estimation in Routing Networks</atitle><btitle>2022 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2022-07-18</date><risdate>2022</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2161-4407</eissn><eisbn>1728186714</eisbn><eisbn>9781728186719</eisbn><abstract>Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN55064.2022.9892952</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-4407
ispartof 2022 International Joint Conference on Neural Networks (IJCNN), 2022, p.1-8
issn 2161-4407
language eng
recordid cdi_ieee_primary_9892952
source IEEE Xplore All Conference Series
subjects Graph Convolution
Open World Learning
Software Define Networks
title Open World Learning Graph Convolution for Latency Estimation in Routing Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Open%20World%20Learning%20Graph%20Convolution%20for%20Latency%20Estimation%20in%20Routing%20Networks&rft.btitle=2022%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Jin,%20Yifei&rft.date=2022-07-18&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN55064.2022.9892952&rft.eisbn=1728186714&rft.eisbn_list=9781728186719&rft_dat=%3Cieee_CHZPO%3E9892952%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i290t-4f2b6aa7c6f7cdc44e23a1a3ce2205071f13e75386c4a20291ad720b28829b0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9892952&rfr_iscdi=true