Loading…
Open World Learning Graph Convolution for Latency Estimation in Routing Networks
Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Jin, Yifei Daoutis, Marios Girdzijauskas, Sarunas Gionis, Aristides |
description | Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input. |
doi_str_mv | 10.1109/IJCNN55064.2022.9892952 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9892952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9892952</ieee_id><sourcerecordid>9892952</sourcerecordid><originalsourceid>FETCH-LOGICAL-i290t-4f2b6aa7c6f7cdc44e23a1a3ce2205071f13e75386c4a20291ad720b28829b0e3</originalsourceid><addsrcrecordid>eNotj91KwzAcxaMguE2fwAvzAp3JP2k-LqXMbVI6EcXLkaapRmtS0qrs7S26qwOHcw7nh9A1JUtKib7Z3hdVledE8CUQgKVWGnQOJ2hOJSiqhKT8FM2ACppxTuQ5mg_DOyHAtGYz9LDrXcAvMXUNLp1JwYdXvE6mf8NFDN-x-xp9DLiNCZdmdMEe8GoY_af5s33Aj3FKTJ3KjT8xfQwX6Kw13eAuj7pAz3erp2KTlbv1trgtMw-ajBlvoRbGSCtaaRvLuQNmqGHWAZCcSNpS5mTOlLDcTGCamkYCqUEp0DVxbIGu_ne9c27fp-lSOuyP9OwXPoZP4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Open World Learning Graph Convolution for Latency Estimation in Routing Networks</title><source>IEEE Xplore All Conference Series</source><creator>Jin, Yifei ; Daoutis, Marios ; Girdzijauskas, Sarunas ; Gionis, Aristides</creator><creatorcontrib>Jin, Yifei ; Daoutis, Marios ; Girdzijauskas, Sarunas ; Gionis, Aristides</creatorcontrib><description>Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1728186714</identifier><identifier>EISBN: 9781728186719</identifier><identifier>DOI: 10.1109/IJCNN55064.2022.9892952</identifier><language>eng</language><publisher>IEEE</publisher><subject>Graph Convolution ; Open World Learning ; Software Define Networks</subject><ispartof>2022 International Joint Conference on Neural Networks (IJCNN), 2022, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9892952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9892952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Yifei</creatorcontrib><creatorcontrib>Daoutis, Marios</creatorcontrib><creatorcontrib>Girdzijauskas, Sarunas</creatorcontrib><creatorcontrib>Gionis, Aristides</creatorcontrib><title>Open World Learning Graph Convolution for Latency Estimation in Routing Networks</title><title>2022 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.</description><subject>Graph Convolution</subject><subject>Open World Learning</subject><subject>Software Define Networks</subject><issn>2161-4407</issn><isbn>1728186714</isbn><isbn>9781728186719</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KwzAcxaMguE2fwAvzAp3JP2k-LqXMbVI6EcXLkaapRmtS0qrs7S26qwOHcw7nh9A1JUtKib7Z3hdVledE8CUQgKVWGnQOJ2hOJSiqhKT8FM2ACppxTuQ5mg_DOyHAtGYz9LDrXcAvMXUNLp1JwYdXvE6mf8NFDN-x-xp9DLiNCZdmdMEe8GoY_af5s33Aj3FKTJ3KjT8xfQwX6Kw13eAuj7pAz3erp2KTlbv1trgtMw-ajBlvoRbGSCtaaRvLuQNmqGHWAZCcSNpS5mTOlLDcTGCamkYCqUEp0DVxbIGu_ne9c27fp-lSOuyP9OwXPoZP4Q</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Jin, Yifei</creator><creator>Daoutis, Marios</creator><creator>Girdzijauskas, Sarunas</creator><creator>Gionis, Aristides</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220718</creationdate><title>Open World Learning Graph Convolution for Latency Estimation in Routing Networks</title><author>Jin, Yifei ; Daoutis, Marios ; Girdzijauskas, Sarunas ; Gionis, Aristides</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i290t-4f2b6aa7c6f7cdc44e23a1a3ce2205071f13e75386c4a20291ad720b28829b0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graph Convolution</topic><topic>Open World Learning</topic><topic>Software Define Networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yifei</creatorcontrib><creatorcontrib>Daoutis, Marios</creatorcontrib><creatorcontrib>Girdzijauskas, Sarunas</creatorcontrib><creatorcontrib>Gionis, Aristides</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Yifei</au><au>Daoutis, Marios</au><au>Girdzijauskas, Sarunas</au><au>Gionis, Aristides</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Open World Learning Graph Convolution for Latency Estimation in Routing Networks</atitle><btitle>2022 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2022-07-18</date><risdate>2022</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2161-4407</eissn><eisbn>1728186714</eisbn><eisbn>9781728186719</eisbn><abstract>Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN55064.2022.9892952</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-4407 |
ispartof | 2022 International Joint Conference on Neural Networks (IJCNN), 2022, p.1-8 |
issn | 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_9892952 |
source | IEEE Xplore All Conference Series |
subjects | Graph Convolution Open World Learning Software Define Networks |
title | Open World Learning Graph Convolution for Latency Estimation in Routing Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Open%20World%20Learning%20Graph%20Convolution%20for%20Latency%20Estimation%20in%20Routing%20Networks&rft.btitle=2022%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Jin,%20Yifei&rft.date=2022-07-18&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN55064.2022.9892952&rft.eisbn=1728186714&rft.eisbn_list=9781728186719&rft_dat=%3Cieee_CHZPO%3E9892952%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i290t-4f2b6aa7c6f7cdc44e23a1a3ce2205071f13e75386c4a20291ad720b28829b0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9892952&rfr_iscdi=true |