Loading…

Homothetic Tube Model Predictive Control for Nonlinear Systems

Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2023-08, Vol.68 (8), p.4554-4569
Main Authors: Rakovic, Sasa V., Dai, Li, Xia, Yuanqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63
cites cdi_FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63
container_end_page 4569
container_issue 8
container_start_page 4554
container_title IEEE transactions on automatic control
container_volume 68
creator Rakovic, Sasa V.
Dai, Li
Xia, Yuanqing
description Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear case. The main analysis is carried out for Lipschitz systems, and it is subsequently extended to set-valued systems and other classes of nonlinear systems as well as particularized for parameterically uncertain linear systems. All desirable computational and structural properties of homothetic tube model predictive control are preserved.
doi_str_mv 10.1109/TAC.2022.3207415
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9894690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9894690</ieee_id><sourcerecordid>2843151571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKt7wU3A9dS8J9kIZbBWqA-wrkMmTXDKdFKTVOi_N6XF1ceF8917OQDcYjTBGKmH5bSZEETIhBJUM8zPwAhzLivCCT0HI4SwrBSR4hJcpbQuo2AMj8DjPGxC_na5s3C5ax18DSvXw4_oVp3N3a-DTRhyDD30IcK3MPTd4EyEn_uU3SZdgwtv-uRuTjkGX7OnZTOvFu_PL810UVmicK4E4p5Ky6x3kotaCG9Ibcq3VAlBJcYl67Y1amUpsYpRRVVbt8Qjb7k3go7B_XHvNoafnUtZr8MuDuWkJpJRzDGvcaHQkbIxpBSd19vYbUzca4z0wZIulvTBkj5ZKpW7Y6Vzzv3jSiomFKJ_Rzlhig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843151571</pqid></control><display><type>article</type><title>Homothetic Tube Model Predictive Control for Nonlinear Systems</title><source>IEEE Xplore (Online service)</source><creator>Rakovic, Sasa V. ; Dai, Li ; Xia, Yuanqing</creator><creatorcontrib>Rakovic, Sasa V. ; Dai, Li ; Xia, Yuanqing</creatorcontrib><description>Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear case. The main analysis is carried out for Lipschitz systems, and it is subsequently extended to set-valued systems and other classes of nonlinear systems as well as particularized for parameterically uncertain linear systems. All desirable computational and structural properties of homothetic tube model predictive control are preserved.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3207415</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Discrete time systems ; Electron tubes ; Linear systems ; Lyapunov methods ; Model predictive control ; Nonlinear control ; Nonlinear systems ; Predictive control ; Trajectory ; tube model predictive control ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2023-08, Vol.68 (8), p.4554-4569</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63</citedby><cites>FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63</cites><orcidid>0000-0002-5977-4911 ; 0000-0002-5402-0483 ; 0000-0002-7268-7548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9894690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rakovic, Sasa V.</creatorcontrib><creatorcontrib>Dai, Li</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><title>Homothetic Tube Model Predictive Control for Nonlinear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear case. The main analysis is carried out for Lipschitz systems, and it is subsequently extended to set-valued systems and other classes of nonlinear systems as well as particularized for parameterically uncertain linear systems. All desirable computational and structural properties of homothetic tube model predictive control are preserved.</description><subject>Control systems</subject><subject>Discrete time systems</subject><subject>Electron tubes</subject><subject>Linear systems</subject><subject>Lyapunov methods</subject><subject>Model predictive control</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Predictive control</subject><subject>Trajectory</subject><subject>tube model predictive control</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEURoMoWKt7wU3A9dS8J9kIZbBWqA-wrkMmTXDKdFKTVOi_N6XF1ceF8917OQDcYjTBGKmH5bSZEETIhBJUM8zPwAhzLivCCT0HI4SwrBSR4hJcpbQuo2AMj8DjPGxC_na5s3C5ax18DSvXw4_oVp3N3a-DTRhyDD30IcK3MPTd4EyEn_uU3SZdgwtv-uRuTjkGX7OnZTOvFu_PL810UVmicK4E4p5Ky6x3kotaCG9Ibcq3VAlBJcYl67Y1amUpsYpRRVVbt8Qjb7k3go7B_XHvNoafnUtZr8MuDuWkJpJRzDGvcaHQkbIxpBSd19vYbUzca4z0wZIulvTBkj5ZKpW7Y6Vzzv3jSiomFKJ_Rzlhig</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Rakovic, Sasa V.</creator><creator>Dai, Li</creator><creator>Xia, Yuanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0002-5402-0483</orcidid><orcidid>https://orcid.org/0000-0002-7268-7548</orcidid></search><sort><creationdate>20230801</creationdate><title>Homothetic Tube Model Predictive Control for Nonlinear Systems</title><author>Rakovic, Sasa V. ; Dai, Li ; Xia, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control systems</topic><topic>Discrete time systems</topic><topic>Electron tubes</topic><topic>Linear systems</topic><topic>Lyapunov methods</topic><topic>Model predictive control</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Predictive control</topic><topic>Trajectory</topic><topic>tube model predictive control</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakovic, Sasa V.</creatorcontrib><creatorcontrib>Dai, Li</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakovic, Sasa V.</au><au>Dai, Li</au><au>Xia, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homothetic Tube Model Predictive Control for Nonlinear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>68</volume><issue>8</issue><spage>4554</spage><epage>4569</epage><pages>4554-4569</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear case. The main analysis is carried out for Lipschitz systems, and it is subsequently extended to set-valued systems and other classes of nonlinear systems as well as particularized for parameterically uncertain linear systems. All desirable computational and structural properties of homothetic tube model predictive control are preserved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3207415</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0002-5402-0483</orcidid><orcidid>https://orcid.org/0000-0002-7268-7548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2023-08, Vol.68 (8), p.4554-4569
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_9894690
source IEEE Xplore (Online service)
subjects Control systems
Discrete time systems
Electron tubes
Linear systems
Lyapunov methods
Model predictive control
Nonlinear control
Nonlinear systems
Predictive control
Trajectory
tube model predictive control
Uncertainty
title Homothetic Tube Model Predictive Control for Nonlinear Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homothetic%20Tube%20Model%20Predictive%20Control%20for%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Rakovic,%20Sasa%20V.&rft.date=2023-08-01&rft.volume=68&rft.issue=8&rft.spage=4554&rft.epage=4569&rft.pages=4554-4569&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3207415&rft_dat=%3Cproquest_ieee_%3E2843151571%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843151571&rft_id=info:pmid/&rft_ieee_id=9894690&rfr_iscdi=true