Loading…
Homothetic Tube Model Predictive Control for Nonlinear Systems
Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear c...
Saved in:
Published in: | IEEE transactions on automatic control 2023-08, Vol.68 (8), p.4554-4569 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63 |
container_end_page | 4569 |
container_issue | 8 |
container_start_page | 4554 |
container_title | IEEE transactions on automatic control |
container_volume | 68 |
creator | Rakovic, Sasa V. Dai, Li Xia, Yuanqing |
description | Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear case. The main analysis is carried out for Lipschitz systems, and it is subsequently extended to set-valued systems and other classes of nonlinear systems as well as particularized for parameterically uncertain linear systems. All desirable computational and structural properties of homothetic tube model predictive control are preserved. |
doi_str_mv | 10.1109/TAC.2022.3207415 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9894690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9894690</ieee_id><sourcerecordid>2843151571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKt7wU3A9dS8J9kIZbBWqA-wrkMmTXDKdFKTVOi_N6XF1ceF8917OQDcYjTBGKmH5bSZEETIhBJUM8zPwAhzLivCCT0HI4SwrBSR4hJcpbQuo2AMj8DjPGxC_na5s3C5ax18DSvXw4_oVp3N3a-DTRhyDD30IcK3MPTd4EyEn_uU3SZdgwtv-uRuTjkGX7OnZTOvFu_PL810UVmicK4E4p5Ky6x3kotaCG9Ibcq3VAlBJcYl67Y1amUpsYpRRVVbt8Qjb7k3go7B_XHvNoafnUtZr8MuDuWkJpJRzDGvcaHQkbIxpBSd19vYbUzca4z0wZIulvTBkj5ZKpW7Y6Vzzv3jSiomFKJ_Rzlhig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843151571</pqid></control><display><type>article</type><title>Homothetic Tube Model Predictive Control for Nonlinear Systems</title><source>IEEE Xplore (Online service)</source><creator>Rakovic, Sasa V. ; Dai, Li ; Xia, Yuanqing</creator><creatorcontrib>Rakovic, Sasa V. ; Dai, Li ; Xia, Yuanqing</creatorcontrib><description>Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear case. The main analysis is carried out for Lipschitz systems, and it is subsequently extended to set-valued systems and other classes of nonlinear systems as well as particularized for parameterically uncertain linear systems. All desirable computational and structural properties of homothetic tube model predictive control are preserved.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3207415</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Discrete time systems ; Electron tubes ; Linear systems ; Lyapunov methods ; Model predictive control ; Nonlinear control ; Nonlinear systems ; Predictive control ; Trajectory ; tube model predictive control ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2023-08, Vol.68 (8), p.4554-4569</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63</citedby><cites>FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63</cites><orcidid>0000-0002-5977-4911 ; 0000-0002-5402-0483 ; 0000-0002-7268-7548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9894690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rakovic, Sasa V.</creatorcontrib><creatorcontrib>Dai, Li</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><title>Homothetic Tube Model Predictive Control for Nonlinear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear case. The main analysis is carried out for Lipschitz systems, and it is subsequently extended to set-valued systems and other classes of nonlinear systems as well as particularized for parameterically uncertain linear systems. All desirable computational and structural properties of homothetic tube model predictive control are preserved.</description><subject>Control systems</subject><subject>Discrete time systems</subject><subject>Electron tubes</subject><subject>Linear systems</subject><subject>Lyapunov methods</subject><subject>Model predictive control</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Predictive control</subject><subject>Trajectory</subject><subject>tube model predictive control</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEURoMoWKt7wU3A9dS8J9kIZbBWqA-wrkMmTXDKdFKTVOi_N6XF1ceF8917OQDcYjTBGKmH5bSZEETIhBJUM8zPwAhzLivCCT0HI4SwrBSR4hJcpbQuo2AMj8DjPGxC_na5s3C5ax18DSvXw4_oVp3N3a-DTRhyDD30IcK3MPTd4EyEn_uU3SZdgwtv-uRuTjkGX7OnZTOvFu_PL810UVmicK4E4p5Ky6x3kotaCG9Ibcq3VAlBJcYl67Y1amUpsYpRRVVbt8Qjb7k3go7B_XHvNoafnUtZr8MuDuWkJpJRzDGvcaHQkbIxpBSd19vYbUzca4z0wZIulvTBkj5ZKpW7Y6Vzzv3jSiomFKJ_Rzlhig</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Rakovic, Sasa V.</creator><creator>Dai, Li</creator><creator>Xia, Yuanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0002-5402-0483</orcidid><orcidid>https://orcid.org/0000-0002-7268-7548</orcidid></search><sort><creationdate>20230801</creationdate><title>Homothetic Tube Model Predictive Control for Nonlinear Systems</title><author>Rakovic, Sasa V. ; Dai, Li ; Xia, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control systems</topic><topic>Discrete time systems</topic><topic>Electron tubes</topic><topic>Linear systems</topic><topic>Lyapunov methods</topic><topic>Model predictive control</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Predictive control</topic><topic>Trajectory</topic><topic>tube model predictive control</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakovic, Sasa V.</creatorcontrib><creatorcontrib>Dai, Li</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakovic, Sasa V.</au><au>Dai, Li</au><au>Xia, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homothetic Tube Model Predictive Control for Nonlinear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>68</volume><issue>8</issue><spage>4554</spage><epage>4569</epage><pages>4554-4569</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Homothetic tube model predictive control is generalized to the setting of nonlinear discrete-time systems. The developed generalization is natural in the sense that the utilized assumptions in the nonlinear setting are suitably generalized variants of the related assumptions deployed in the linear case. The main analysis is carried out for Lipschitz systems, and it is subsequently extended to set-valued systems and other classes of nonlinear systems as well as particularized for parameterically uncertain linear systems. All desirable computational and structural properties of homothetic tube model predictive control are preserved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3207415</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0002-5402-0483</orcidid><orcidid>https://orcid.org/0000-0002-7268-7548</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2023-08, Vol.68 (8), p.4554-4569 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_9894690 |
source | IEEE Xplore (Online service) |
subjects | Control systems Discrete time systems Electron tubes Linear systems Lyapunov methods Model predictive control Nonlinear control Nonlinear systems Predictive control Trajectory tube model predictive control Uncertainty |
title | Homothetic Tube Model Predictive Control for Nonlinear Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homothetic%20Tube%20Model%20Predictive%20Control%20for%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Rakovic,%20Sasa%20V.&rft.date=2023-08-01&rft.volume=68&rft.issue=8&rft.spage=4554&rft.epage=4569&rft.pages=4554-4569&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3207415&rft_dat=%3Cproquest_ieee_%3E2843151571%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-605f38c4cfe856766fa27a022396638113967bba9dc32c943939b7b2f0fc5fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843151571&rft_id=info:pmid/&rft_ieee_id=9894690&rfr_iscdi=true |