Loading…

Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery

The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2023-01, Vol.59 (1), p.736-744
Main Authors: Lindh, Pia, Tiainen, Jonna, Gronman, Aki, Turunen-Saaresti, Teemu, Di, Chong, Laurila, Lasse, Scherman, Eero, Handroos, Heikki, Pyrhonen, Juha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3
cites cdi_FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3
container_end_page 744
container_issue 1
container_start_page 736
container_title IEEE transactions on industry applications
container_volume 59
creator Lindh, Pia
Tiainen, Jonna
Gronman, Aki
Turunen-Saaresti, Teemu
Di, Chong
Laurila, Lasse
Scherman, Eero
Handroos, Heikki
Pyrhonen, Juha
description The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work presents a design of a 7-kW integrated EH machine and studies its electric motor heat transfer phenomena both experimentally and numerically. Further, to better match the torque and speed performances of the permanent magnet synchronous motor (PMSM) and the hydraulic machine a planetary step-down gear is utilized to triple the output torque of the PMSM. The integrated motor and gear system is then connected to a bent axis piston hydraulic machine, which is capable of operating both as a motor and a pump. Two different electric motor cooling approaches are investigated. The first cooling approach is to use some hydraulic oil inside the motor-gear chamber to let it flow freely as a result of the rotor rotation and move the losses to the surface of the converter cover, which is equipped with some air cooling fins. In the second approach, the oil flows through the converter and removes the losses more effectively. Motor losses and thermal behaviour are studied within these two cooling approaches. Computational fluid dynamic (CFD) simulations are performed to find how the coolant is distributed inside the machine and how heat is distributed in the device.
doi_str_mv 10.1109/TIA.2022.3207983
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9896162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9896162</ieee_id><sourcerecordid>2767316430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc2de0iXNcYxNB5uCzJsQ0vZl66jNTDul_70ZG57e5fd93-NHyD2wEQDTT-vFZMQZ5yPBmdKZuCAD0EInWkh1SQaMaZFordNrctO2O8YgHUM6IJ_rX0-n3tdVs6GT_T54W2yxpd5R29BZjUUX_LYvgz3UVUFnDYZNHwPND4YOA537QF99k7x7W9KVz6sa6SpWVBHsb8mVs3WLd-c7JB_z2Xr6kizfnhfTyTIpuBRdooQEwaG04FTOx6wEtCpXJRYFz8BJqR3PbQ7cZmOhc64z5TCzUI6dg8iJIXk89cb3vw_YdmbnD6GJk4YrqQTIVLBIsRNVBN-2AZ3Zh-rLht4AM0eHJjo0R4fm7DBGHk6RChH_cZ1pCZKLPwmLbVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767316430</pqid></control><display><type>article</type><title>Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery</title><source>IEEE Xplore (Online service)</source><creator>Lindh, Pia ; Tiainen, Jonna ; Gronman, Aki ; Turunen-Saaresti, Teemu ; Di, Chong ; Laurila, Lasse ; Scherman, Eero ; Handroos, Heikki ; Pyrhonen, Juha</creator><creatorcontrib>Lindh, Pia ; Tiainen, Jonna ; Gronman, Aki ; Turunen-Saaresti, Teemu ; Di, Chong ; Laurila, Lasse ; Scherman, Eero ; Handroos, Heikki ; Pyrhonen, Juha</creatorcontrib><description>The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work presents a design of a 7-kW integrated EH machine and studies its electric motor heat transfer phenomena both experimentally and numerically. Further, to better match the torque and speed performances of the permanent magnet synchronous motor (PMSM) and the hydraulic machine a planetary step-down gear is utilized to triple the output torque of the PMSM. The integrated motor and gear system is then connected to a bent axis piston hydraulic machine, which is capable of operating both as a motor and a pump. Two different electric motor cooling approaches are investigated. The first cooling approach is to use some hydraulic oil inside the motor-gear chamber to let it flow freely as a result of the rotor rotation and move the losses to the surface of the converter cover, which is equipped with some air cooling fins. In the second approach, the oil flows through the converter and removes the losses more effectively. Motor losses and thermal behaviour are studied within these two cooling approaches. Computational fluid dynamic (CFD) simulations are performed to find how the coolant is distributed inside the machine and how heat is distributed in the device.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2022.3207983</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air cooling ; Computational fluid dynamics ; Cooling ; Cooling fins ; Electric drives ; Electric motors ; electrical mac- hine ; Gears ; Hydraulic systems ; Hydraulics ; oil-cooling ; Oils ; permanent magnet machine ; Permanent magnet motors ; Permanent magnets ; Rotors ; Servocontrol ; Synchronous motors ; Thermodynamic properties ; Torque</subject><ispartof>IEEE transactions on industry applications, 2023-01, Vol.59 (1), p.736-744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3</citedby><cites>FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3</cites><orcidid>0000-0002-3984-9437 ; 0000-0001-8998-1228 ; 0000-0001-6162-5811 ; 0000-0001-6704-1315 ; 0000-0002-9479-0968 ; 0000-0002-2434-1331 ; 0000-0002-6365-2861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9896162$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lindh, Pia</creatorcontrib><creatorcontrib>Tiainen, Jonna</creatorcontrib><creatorcontrib>Gronman, Aki</creatorcontrib><creatorcontrib>Turunen-Saaresti, Teemu</creatorcontrib><creatorcontrib>Di, Chong</creatorcontrib><creatorcontrib>Laurila, Lasse</creatorcontrib><creatorcontrib>Scherman, Eero</creatorcontrib><creatorcontrib>Handroos, Heikki</creatorcontrib><creatorcontrib>Pyrhonen, Juha</creatorcontrib><title>Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work presents a design of a 7-kW integrated EH machine and studies its electric motor heat transfer phenomena both experimentally and numerically. Further, to better match the torque and speed performances of the permanent magnet synchronous motor (PMSM) and the hydraulic machine a planetary step-down gear is utilized to triple the output torque of the PMSM. The integrated motor and gear system is then connected to a bent axis piston hydraulic machine, which is capable of operating both as a motor and a pump. Two different electric motor cooling approaches are investigated. The first cooling approach is to use some hydraulic oil inside the motor-gear chamber to let it flow freely as a result of the rotor rotation and move the losses to the surface of the converter cover, which is equipped with some air cooling fins. In the second approach, the oil flows through the converter and removes the losses more effectively. Motor losses and thermal behaviour are studied within these two cooling approaches. Computational fluid dynamic (CFD) simulations are performed to find how the coolant is distributed inside the machine and how heat is distributed in the device.</description><subject>Air cooling</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Cooling fins</subject><subject>Electric drives</subject><subject>Electric motors</subject><subject>electrical mac- hine</subject><subject>Gears</subject><subject>Hydraulic systems</subject><subject>Hydraulics</subject><subject>oil-cooling</subject><subject>Oils</subject><subject>permanent magnet machine</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Rotors</subject><subject>Servocontrol</subject><subject>Synchronous motors</subject><subject>Thermodynamic properties</subject><subject>Torque</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc2de0iXNcYxNB5uCzJsQ0vZl66jNTDul_70ZG57e5fd93-NHyD2wEQDTT-vFZMQZ5yPBmdKZuCAD0EInWkh1SQaMaZFordNrctO2O8YgHUM6IJ_rX0-n3tdVs6GT_T54W2yxpd5R29BZjUUX_LYvgz3UVUFnDYZNHwPND4YOA537QF99k7x7W9KVz6sa6SpWVBHsb8mVs3WLd-c7JB_z2Xr6kizfnhfTyTIpuBRdooQEwaG04FTOx6wEtCpXJRYFz8BJqR3PbQ7cZmOhc64z5TCzUI6dg8iJIXk89cb3vw_YdmbnD6GJk4YrqQTIVLBIsRNVBN-2AZ3Zh-rLht4AM0eHJjo0R4fm7DBGHk6RChH_cZ1pCZKLPwmLbVs</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Lindh, Pia</creator><creator>Tiainen, Jonna</creator><creator>Gronman, Aki</creator><creator>Turunen-Saaresti, Teemu</creator><creator>Di, Chong</creator><creator>Laurila, Lasse</creator><creator>Scherman, Eero</creator><creator>Handroos, Heikki</creator><creator>Pyrhonen, Juha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3984-9437</orcidid><orcidid>https://orcid.org/0000-0001-8998-1228</orcidid><orcidid>https://orcid.org/0000-0001-6162-5811</orcidid><orcidid>https://orcid.org/0000-0001-6704-1315</orcidid><orcidid>https://orcid.org/0000-0002-9479-0968</orcidid><orcidid>https://orcid.org/0000-0002-2434-1331</orcidid><orcidid>https://orcid.org/0000-0002-6365-2861</orcidid></search><sort><creationdate>202301</creationdate><title>Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery</title><author>Lindh, Pia ; Tiainen, Jonna ; Gronman, Aki ; Turunen-Saaresti, Teemu ; Di, Chong ; Laurila, Lasse ; Scherman, Eero ; Handroos, Heikki ; Pyrhonen, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air cooling</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Cooling fins</topic><topic>Electric drives</topic><topic>Electric motors</topic><topic>electrical mac- hine</topic><topic>Gears</topic><topic>Hydraulic systems</topic><topic>Hydraulics</topic><topic>oil-cooling</topic><topic>Oils</topic><topic>permanent magnet machine</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Rotors</topic><topic>Servocontrol</topic><topic>Synchronous motors</topic><topic>Thermodynamic properties</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindh, Pia</creatorcontrib><creatorcontrib>Tiainen, Jonna</creatorcontrib><creatorcontrib>Gronman, Aki</creatorcontrib><creatorcontrib>Turunen-Saaresti, Teemu</creatorcontrib><creatorcontrib>Di, Chong</creatorcontrib><creatorcontrib>Laurila, Lasse</creatorcontrib><creatorcontrib>Scherman, Eero</creatorcontrib><creatorcontrib>Handroos, Heikki</creatorcontrib><creatorcontrib>Pyrhonen, Juha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindh, Pia</au><au>Tiainen, Jonna</au><au>Gronman, Aki</au><au>Turunen-Saaresti, Teemu</au><au>Di, Chong</au><au>Laurila, Lasse</au><au>Scherman, Eero</au><au>Handroos, Heikki</au><au>Pyrhonen, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2023-01</date><risdate>2023</risdate><volume>59</volume><issue>1</issue><spage>736</spage><epage>744</epage><pages>736-744</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work presents a design of a 7-kW integrated EH machine and studies its electric motor heat transfer phenomena both experimentally and numerically. Further, to better match the torque and speed performances of the permanent magnet synchronous motor (PMSM) and the hydraulic machine a planetary step-down gear is utilized to triple the output torque of the PMSM. The integrated motor and gear system is then connected to a bent axis piston hydraulic machine, which is capable of operating both as a motor and a pump. Two different electric motor cooling approaches are investigated. The first cooling approach is to use some hydraulic oil inside the motor-gear chamber to let it flow freely as a result of the rotor rotation and move the losses to the surface of the converter cover, which is equipped with some air cooling fins. In the second approach, the oil flows through the converter and removes the losses more effectively. Motor losses and thermal behaviour are studied within these two cooling approaches. Computational fluid dynamic (CFD) simulations are performed to find how the coolant is distributed inside the machine and how heat is distributed in the device.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2022.3207983</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3984-9437</orcidid><orcidid>https://orcid.org/0000-0001-8998-1228</orcidid><orcidid>https://orcid.org/0000-0001-6162-5811</orcidid><orcidid>https://orcid.org/0000-0001-6704-1315</orcidid><orcidid>https://orcid.org/0000-0002-9479-0968</orcidid><orcidid>https://orcid.org/0000-0002-2434-1331</orcidid><orcidid>https://orcid.org/0000-0002-6365-2861</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2023-01, Vol.59 (1), p.736-744
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_9896162
source IEEE Xplore (Online service)
subjects Air cooling
Computational fluid dynamics
Cooling
Cooling fins
Electric drives
Electric motors
electrical mac- hine
Gears
Hydraulic systems
Hydraulics
oil-cooling
Oils
permanent magnet machine
Permanent magnet motors
Permanent magnets
Rotors
Servocontrol
Synchronous motors
Thermodynamic properties
Torque
title Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Cooling%20Approaches%20of%20an%20Electrohydraulic%20Energy%20Converter%20For%20Non-Road%20Mobile%20Machinery&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Lindh,%20Pia&rft.date=2023-01&rft.volume=59&rft.issue=1&rft.spage=736&rft.epage=744&rft.pages=736-744&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2022.3207983&rft_dat=%3Cproquest_ieee_%3E2767316430%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767316430&rft_id=info:pmid/&rft_ieee_id=9896162&rfr_iscdi=true