Loading…
Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery
The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work p...
Saved in:
Published in: | IEEE transactions on industry applications 2023-01, Vol.59 (1), p.736-744 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3 |
container_end_page | 744 |
container_issue | 1 |
container_start_page | 736 |
container_title | IEEE transactions on industry applications |
container_volume | 59 |
creator | Lindh, Pia Tiainen, Jonna Gronman, Aki Turunen-Saaresti, Teemu Di, Chong Laurila, Lasse Scherman, Eero Handroos, Heikki Pyrhonen, Juha |
description | The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work presents a design of a 7-kW integrated EH machine and studies its electric motor heat transfer phenomena both experimentally and numerically. Further, to better match the torque and speed performances of the permanent magnet synchronous motor (PMSM) and the hydraulic machine a planetary step-down gear is utilized to triple the output torque of the PMSM. The integrated motor and gear system is then connected to a bent axis piston hydraulic machine, which is capable of operating both as a motor and a pump. Two different electric motor cooling approaches are investigated. The first cooling approach is to use some hydraulic oil inside the motor-gear chamber to let it flow freely as a result of the rotor rotation and move the losses to the surface of the converter cover, which is equipped with some air cooling fins. In the second approach, the oil flows through the converter and removes the losses more effectively. Motor losses and thermal behaviour are studied within these two cooling approaches. Computational fluid dynamic (CFD) simulations are performed to find how the coolant is distributed inside the machine and how heat is distributed in the device. |
doi_str_mv | 10.1109/TIA.2022.3207983 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9896162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9896162</ieee_id><sourcerecordid>2767316430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc2de0iXNcYxNB5uCzJsQ0vZl66jNTDul_70ZG57e5fd93-NHyD2wEQDTT-vFZMQZ5yPBmdKZuCAD0EInWkh1SQaMaZFordNrctO2O8YgHUM6IJ_rX0-n3tdVs6GT_T54W2yxpd5R29BZjUUX_LYvgz3UVUFnDYZNHwPND4YOA537QF99k7x7W9KVz6sa6SpWVBHsb8mVs3WLd-c7JB_z2Xr6kizfnhfTyTIpuBRdooQEwaG04FTOx6wEtCpXJRYFz8BJqR3PbQ7cZmOhc64z5TCzUI6dg8iJIXk89cb3vw_YdmbnD6GJk4YrqQTIVLBIsRNVBN-2AZ3Zh-rLht4AM0eHJjo0R4fm7DBGHk6RChH_cZ1pCZKLPwmLbVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767316430</pqid></control><display><type>article</type><title>Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery</title><source>IEEE Xplore (Online service)</source><creator>Lindh, Pia ; Tiainen, Jonna ; Gronman, Aki ; Turunen-Saaresti, Teemu ; Di, Chong ; Laurila, Lasse ; Scherman, Eero ; Handroos, Heikki ; Pyrhonen, Juha</creator><creatorcontrib>Lindh, Pia ; Tiainen, Jonna ; Gronman, Aki ; Turunen-Saaresti, Teemu ; Di, Chong ; Laurila, Lasse ; Scherman, Eero ; Handroos, Heikki ; Pyrhonen, Juha</creatorcontrib><description>The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work presents a design of a 7-kW integrated EH machine and studies its electric motor heat transfer phenomena both experimentally and numerically. Further, to better match the torque and speed performances of the permanent magnet synchronous motor (PMSM) and the hydraulic machine a planetary step-down gear is utilized to triple the output torque of the PMSM. The integrated motor and gear system is then connected to a bent axis piston hydraulic machine, which is capable of operating both as a motor and a pump. Two different electric motor cooling approaches are investigated. The first cooling approach is to use some hydraulic oil inside the motor-gear chamber to let it flow freely as a result of the rotor rotation and move the losses to the surface of the converter cover, which is equipped with some air cooling fins. In the second approach, the oil flows through the converter and removes the losses more effectively. Motor losses and thermal behaviour are studied within these two cooling approaches. Computational fluid dynamic (CFD) simulations are performed to find how the coolant is distributed inside the machine and how heat is distributed in the device.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2022.3207983</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air cooling ; Computational fluid dynamics ; Cooling ; Cooling fins ; Electric drives ; Electric motors ; electrical mac- hine ; Gears ; Hydraulic systems ; Hydraulics ; oil-cooling ; Oils ; permanent magnet machine ; Permanent magnet motors ; Permanent magnets ; Rotors ; Servocontrol ; Synchronous motors ; Thermodynamic properties ; Torque</subject><ispartof>IEEE transactions on industry applications, 2023-01, Vol.59 (1), p.736-744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3</citedby><cites>FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3</cites><orcidid>0000-0002-3984-9437 ; 0000-0001-8998-1228 ; 0000-0001-6162-5811 ; 0000-0001-6704-1315 ; 0000-0002-9479-0968 ; 0000-0002-2434-1331 ; 0000-0002-6365-2861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9896162$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lindh, Pia</creatorcontrib><creatorcontrib>Tiainen, Jonna</creatorcontrib><creatorcontrib>Gronman, Aki</creatorcontrib><creatorcontrib>Turunen-Saaresti, Teemu</creatorcontrib><creatorcontrib>Di, Chong</creatorcontrib><creatorcontrib>Laurila, Lasse</creatorcontrib><creatorcontrib>Scherman, Eero</creatorcontrib><creatorcontrib>Handroos, Heikki</creatorcontrib><creatorcontrib>Pyrhonen, Juha</creatorcontrib><title>Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work presents a design of a 7-kW integrated EH machine and studies its electric motor heat transfer phenomena both experimentally and numerically. Further, to better match the torque and speed performances of the permanent magnet synchronous motor (PMSM) and the hydraulic machine a planetary step-down gear is utilized to triple the output torque of the PMSM. The integrated motor and gear system is then connected to a bent axis piston hydraulic machine, which is capable of operating both as a motor and a pump. Two different electric motor cooling approaches are investigated. The first cooling approach is to use some hydraulic oil inside the motor-gear chamber to let it flow freely as a result of the rotor rotation and move the losses to the surface of the converter cover, which is equipped with some air cooling fins. In the second approach, the oil flows through the converter and removes the losses more effectively. Motor losses and thermal behaviour are studied within these two cooling approaches. Computational fluid dynamic (CFD) simulations are performed to find how the coolant is distributed inside the machine and how heat is distributed in the device.</description><subject>Air cooling</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Cooling fins</subject><subject>Electric drives</subject><subject>Electric motors</subject><subject>electrical mac- hine</subject><subject>Gears</subject><subject>Hydraulic systems</subject><subject>Hydraulics</subject><subject>oil-cooling</subject><subject>Oils</subject><subject>permanent magnet machine</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Rotors</subject><subject>Servocontrol</subject><subject>Synchronous motors</subject><subject>Thermodynamic properties</subject><subject>Torque</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc2de0iXNcYxNB5uCzJsQ0vZl66jNTDul_70ZG57e5fd93-NHyD2wEQDTT-vFZMQZ5yPBmdKZuCAD0EInWkh1SQaMaZFordNrctO2O8YgHUM6IJ_rX0-n3tdVs6GT_T54W2yxpd5R29BZjUUX_LYvgz3UVUFnDYZNHwPND4YOA537QF99k7x7W9KVz6sa6SpWVBHsb8mVs3WLd-c7JB_z2Xr6kizfnhfTyTIpuBRdooQEwaG04FTOx6wEtCpXJRYFz8BJqR3PbQ7cZmOhc64z5TCzUI6dg8iJIXk89cb3vw_YdmbnD6GJk4YrqQTIVLBIsRNVBN-2AZ3Zh-rLht4AM0eHJjo0R4fm7DBGHk6RChH_cZ1pCZKLPwmLbVs</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Lindh, Pia</creator><creator>Tiainen, Jonna</creator><creator>Gronman, Aki</creator><creator>Turunen-Saaresti, Teemu</creator><creator>Di, Chong</creator><creator>Laurila, Lasse</creator><creator>Scherman, Eero</creator><creator>Handroos, Heikki</creator><creator>Pyrhonen, Juha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3984-9437</orcidid><orcidid>https://orcid.org/0000-0001-8998-1228</orcidid><orcidid>https://orcid.org/0000-0001-6162-5811</orcidid><orcidid>https://orcid.org/0000-0001-6704-1315</orcidid><orcidid>https://orcid.org/0000-0002-9479-0968</orcidid><orcidid>https://orcid.org/0000-0002-2434-1331</orcidid><orcidid>https://orcid.org/0000-0002-6365-2861</orcidid></search><sort><creationdate>202301</creationdate><title>Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery</title><author>Lindh, Pia ; Tiainen, Jonna ; Gronman, Aki ; Turunen-Saaresti, Teemu ; Di, Chong ; Laurila, Lasse ; Scherman, Eero ; Handroos, Heikki ; Pyrhonen, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air cooling</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Cooling fins</topic><topic>Electric drives</topic><topic>Electric motors</topic><topic>electrical mac- hine</topic><topic>Gears</topic><topic>Hydraulic systems</topic><topic>Hydraulics</topic><topic>oil-cooling</topic><topic>Oils</topic><topic>permanent magnet machine</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Rotors</topic><topic>Servocontrol</topic><topic>Synchronous motors</topic><topic>Thermodynamic properties</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindh, Pia</creatorcontrib><creatorcontrib>Tiainen, Jonna</creatorcontrib><creatorcontrib>Gronman, Aki</creatorcontrib><creatorcontrib>Turunen-Saaresti, Teemu</creatorcontrib><creatorcontrib>Di, Chong</creatorcontrib><creatorcontrib>Laurila, Lasse</creatorcontrib><creatorcontrib>Scherman, Eero</creatorcontrib><creatorcontrib>Handroos, Heikki</creatorcontrib><creatorcontrib>Pyrhonen, Juha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindh, Pia</au><au>Tiainen, Jonna</au><au>Gronman, Aki</au><au>Turunen-Saaresti, Teemu</au><au>Di, Chong</au><au>Laurila, Lasse</au><au>Scherman, Eero</au><au>Handroos, Heikki</au><au>Pyrhonen, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2023-01</date><risdate>2023</risdate><volume>59</volume><issue>1</issue><spage>736</spage><epage>744</epage><pages>736-744</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>The energy efficiency of non-road mobile machinery can be improved by using e.g., an electric drive system as a servo controller of a hydraulic machine to get an efficient electro-hydraulic (EH) converter. However, the cooling of EH devices require more understanding and new innovations. This work presents a design of a 7-kW integrated EH machine and studies its electric motor heat transfer phenomena both experimentally and numerically. Further, to better match the torque and speed performances of the permanent magnet synchronous motor (PMSM) and the hydraulic machine a planetary step-down gear is utilized to triple the output torque of the PMSM. The integrated motor and gear system is then connected to a bent axis piston hydraulic machine, which is capable of operating both as a motor and a pump. Two different electric motor cooling approaches are investigated. The first cooling approach is to use some hydraulic oil inside the motor-gear chamber to let it flow freely as a result of the rotor rotation and move the losses to the surface of the converter cover, which is equipped with some air cooling fins. In the second approach, the oil flows through the converter and removes the losses more effectively. Motor losses and thermal behaviour are studied within these two cooling approaches. Computational fluid dynamic (CFD) simulations are performed to find how the coolant is distributed inside the machine and how heat is distributed in the device.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2022.3207983</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3984-9437</orcidid><orcidid>https://orcid.org/0000-0001-8998-1228</orcidid><orcidid>https://orcid.org/0000-0001-6162-5811</orcidid><orcidid>https://orcid.org/0000-0001-6704-1315</orcidid><orcidid>https://orcid.org/0000-0002-9479-0968</orcidid><orcidid>https://orcid.org/0000-0002-2434-1331</orcidid><orcidid>https://orcid.org/0000-0002-6365-2861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2023-01, Vol.59 (1), p.736-744 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_9896162 |
source | IEEE Xplore (Online service) |
subjects | Air cooling Computational fluid dynamics Cooling Cooling fins Electric drives Electric motors electrical mac- hine Gears Hydraulic systems Hydraulics oil-cooling Oils permanent magnet machine Permanent magnet motors Permanent magnets Rotors Servocontrol Synchronous motors Thermodynamic properties Torque |
title | Two Cooling Approaches of an Electrohydraulic Energy Converter For Non-Road Mobile Machinery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Cooling%20Approaches%20of%20an%20Electrohydraulic%20Energy%20Converter%20For%20Non-Road%20Mobile%20Machinery&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Lindh,%20Pia&rft.date=2023-01&rft.volume=59&rft.issue=1&rft.spage=736&rft.epage=744&rft.pages=736-744&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2022.3207983&rft_dat=%3Cproquest_ieee_%3E2767316430%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-7361321da1f7b250d1ea7b7decc281f669f2bab12a8539b2987fe8a1d5ff1b7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767316430&rft_id=info:pmid/&rft_ieee_id=9896162&rfr_iscdi=true |