Loading…

Semi-Supervised Ranking for Object Image Blur Assessment

Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confuse...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Qiang, Yao, Zhaoliang, Wang, Jingjing, Tian, Ye, Yang, Pengju, Xie, Di, Pu, Shiliang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 25
container_issue
container_start_page 21
container_title
container_volume
creator Li, Qiang
Yao, Zhaoliang
Wang, Jingjing
Tian, Ye
Yang, Pengju
Xie, Di
Pu, Shiliang
description Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method. Source of labeled datasets: https://github.com/yzliangHIK2022/SSRanking-for-Object-BA
doi_str_mv 10.1109/ICIP46576.2022.9897230
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9897230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9897230</ieee_id><sourcerecordid>9897230</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-bbcf0ee6f3fb07af66451d8b85346c3ac47c67b68907e7dc32a04728fd4d3f903</originalsourceid><addsrcrecordid>eNotj1tLwzAYQKMguIu_QJD8gdYvl-byOIvOwmCy6fNI0i8jc62j6QT_vYJ7OpyXA4eQBwYlY2Afm7p5k6rSquTAeWmN1VzAFZkypSppFQd9TSZcGFaYP78l05wPAByYYBNittilYns-4fCdMrZ04_rP1O9p_Bro2h8wjLTp3B7p0_E80EXOmHOH_TgnN9EdM95dOCMfL8_v9WuxWi-berEqEgcxFt6HCIgqiuhBu6iUrFhrvKmEVEG4IHVQ2itjQaNug-AOpOYmtrIV0YKYkfv_bkLE3WlInRt-dpdL8QuJikbq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semi-Supervised Ranking for Object Image Blur Assessment</title><source>IEEE Xplore All Conference Series</source><creator>Li, Qiang ; Yao, Zhaoliang ; Wang, Jingjing ; Tian, Ye ; Yang, Pengju ; Xie, Di ; Pu, Shiliang</creator><creatorcontrib>Li, Qiang ; Yao, Zhaoliang ; Wang, Jingjing ; Tian, Ye ; Yang, Pengju ; Xie, Di ; Pu, Shiliang</creatorcontrib><description>Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method. Source of labeled datasets: https://github.com/yzliangHIK2022/SSRanking-for-Object-BA</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665496207</identifier><identifier>EISBN: 9781665496209</identifier><identifier>DOI: 10.1109/ICIP46576.2022.9897230</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face recognition ; Image processing ; Object image blur assessment ; Object recognition ; Pairwise ranking ; Quadruplet ranking ; Reliability ; Self-supervised learning ; Semi-supervised learning ; Semisupervised learning ; Supervised learning</subject><ispartof>2022 IEEE International Conference on Image Processing (ICIP), 2022, p.21-25</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9897230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9897230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yao, Zhaoliang</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Yang, Pengju</creatorcontrib><creatorcontrib>Xie, Di</creatorcontrib><creatorcontrib>Pu, Shiliang</creatorcontrib><title>Semi-Supervised Ranking for Object Image Blur Assessment</title><title>2022 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method. Source of labeled datasets: https://github.com/yzliangHIK2022/SSRanking-for-Object-BA</description><subject>Face recognition</subject><subject>Image processing</subject><subject>Object image blur assessment</subject><subject>Object recognition</subject><subject>Pairwise ranking</subject><subject>Quadruplet ranking</subject><subject>Reliability</subject><subject>Self-supervised learning</subject><subject>Semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Supervised learning</subject><issn>2381-8549</issn><isbn>1665496207</isbn><isbn>9781665496209</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1tLwzAYQKMguIu_QJD8gdYvl-byOIvOwmCy6fNI0i8jc62j6QT_vYJ7OpyXA4eQBwYlY2Afm7p5k6rSquTAeWmN1VzAFZkypSppFQd9TSZcGFaYP78l05wPAByYYBNittilYns-4fCdMrZ04_rP1O9p_Bro2h8wjLTp3B7p0_E80EXOmHOH_TgnN9EdM95dOCMfL8_v9WuxWi-berEqEgcxFt6HCIgqiuhBu6iUrFhrvKmEVEG4IHVQ2itjQaNug-AOpOYmtrIV0YKYkfv_bkLE3WlInRt-dpdL8QuJikbq</recordid><startdate>20221016</startdate><enddate>20221016</enddate><creator>Li, Qiang</creator><creator>Yao, Zhaoliang</creator><creator>Wang, Jingjing</creator><creator>Tian, Ye</creator><creator>Yang, Pengju</creator><creator>Xie, Di</creator><creator>Pu, Shiliang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221016</creationdate><title>Semi-Supervised Ranking for Object Image Blur Assessment</title><author>Li, Qiang ; Yao, Zhaoliang ; Wang, Jingjing ; Tian, Ye ; Yang, Pengju ; Xie, Di ; Pu, Shiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-bbcf0ee6f3fb07af66451d8b85346c3ac47c67b68907e7dc32a04728fd4d3f903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Face recognition</topic><topic>Image processing</topic><topic>Object image blur assessment</topic><topic>Object recognition</topic><topic>Pairwise ranking</topic><topic>Quadruplet ranking</topic><topic>Reliability</topic><topic>Self-supervised learning</topic><topic>Semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yao, Zhaoliang</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Yang, Pengju</creatorcontrib><creatorcontrib>Xie, Di</creatorcontrib><creatorcontrib>Pu, Shiliang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Qiang</au><au>Yao, Zhaoliang</au><au>Wang, Jingjing</au><au>Tian, Ye</au><au>Yang, Pengju</au><au>Xie, Di</au><au>Pu, Shiliang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semi-Supervised Ranking for Object Image Blur Assessment</atitle><btitle>2022 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2022-10-16</date><risdate>2022</risdate><spage>21</spage><epage>25</epage><pages>21-25</pages><eissn>2381-8549</eissn><eisbn>1665496207</eisbn><eisbn>9781665496209</eisbn><abstract>Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method. Source of labeled datasets: https://github.com/yzliangHIK2022/SSRanking-for-Object-BA</abstract><pub>IEEE</pub><doi>10.1109/ICIP46576.2022.9897230</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2022 IEEE International Conference on Image Processing (ICIP), 2022, p.21-25
issn 2381-8549
language eng
recordid cdi_ieee_primary_9897230
source IEEE Xplore All Conference Series
subjects Face recognition
Image processing
Object image blur assessment
Object recognition
Pairwise ranking
Quadruplet ranking
Reliability
Self-supervised learning
Semi-supervised learning
Semisupervised learning
Supervised learning
title Semi-Supervised Ranking for Object Image Blur Assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semi-Supervised%20Ranking%20for%20Object%20Image%20Blur%20Assessment&rft.btitle=2022%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Li,%20Qiang&rft.date=2022-10-16&rft.spage=21&rft.epage=25&rft.pages=21-25&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP46576.2022.9897230&rft.eisbn=1665496207&rft.eisbn_list=9781665496209&rft_dat=%3Cieee_CHZPO%3E9897230%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-bbcf0ee6f3fb07af66451d8b85346c3ac47c67b68907e7dc32a04728fd4d3f903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9897230&rfr_iscdi=true