Loading…
Semi-Supervised Ranking for Object Image Blur Assessment
Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confuse...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 25 |
container_issue | |
container_start_page | 21 |
container_title | |
container_volume | |
creator | Li, Qiang Yao, Zhaoliang Wang, Jingjing Tian, Ye Yang, Pengju Xie, Di Pu, Shiliang |
description | Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method. Source of labeled datasets: https://github.com/yzliangHIK2022/SSRanking-for-Object-BA |
doi_str_mv | 10.1109/ICIP46576.2022.9897230 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9897230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9897230</ieee_id><sourcerecordid>9897230</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-bbcf0ee6f3fb07af66451d8b85346c3ac47c67b68907e7dc32a04728fd4d3f903</originalsourceid><addsrcrecordid>eNotj1tLwzAYQKMguIu_QJD8gdYvl-byOIvOwmCy6fNI0i8jc62j6QT_vYJ7OpyXA4eQBwYlY2Afm7p5k6rSquTAeWmN1VzAFZkypSppFQd9TSZcGFaYP78l05wPAByYYBNittilYns-4fCdMrZ04_rP1O9p_Bro2h8wjLTp3B7p0_E80EXOmHOH_TgnN9EdM95dOCMfL8_v9WuxWi-berEqEgcxFt6HCIgqiuhBu6iUrFhrvKmEVEG4IHVQ2itjQaNug-AOpOYmtrIV0YKYkfv_bkLE3WlInRt-dpdL8QuJikbq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semi-Supervised Ranking for Object Image Blur Assessment</title><source>IEEE Xplore All Conference Series</source><creator>Li, Qiang ; Yao, Zhaoliang ; Wang, Jingjing ; Tian, Ye ; Yang, Pengju ; Xie, Di ; Pu, Shiliang</creator><creatorcontrib>Li, Qiang ; Yao, Zhaoliang ; Wang, Jingjing ; Tian, Ye ; Yang, Pengju ; Xie, Di ; Pu, Shiliang</creatorcontrib><description>Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method. Source of labeled datasets: https://github.com/yzliangHIK2022/SSRanking-for-Object-BA</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665496207</identifier><identifier>EISBN: 9781665496209</identifier><identifier>DOI: 10.1109/ICIP46576.2022.9897230</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face recognition ; Image processing ; Object image blur assessment ; Object recognition ; Pairwise ranking ; Quadruplet ranking ; Reliability ; Self-supervised learning ; Semi-supervised learning ; Semisupervised learning ; Supervised learning</subject><ispartof>2022 IEEE International Conference on Image Processing (ICIP), 2022, p.21-25</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9897230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9897230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yao, Zhaoliang</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Yang, Pengju</creatorcontrib><creatorcontrib>Xie, Di</creatorcontrib><creatorcontrib>Pu, Shiliang</creatorcontrib><title>Semi-Supervised Ranking for Object Image Blur Assessment</title><title>2022 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method. Source of labeled datasets: https://github.com/yzliangHIK2022/SSRanking-for-Object-BA</description><subject>Face recognition</subject><subject>Image processing</subject><subject>Object image blur assessment</subject><subject>Object recognition</subject><subject>Pairwise ranking</subject><subject>Quadruplet ranking</subject><subject>Reliability</subject><subject>Self-supervised learning</subject><subject>Semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Supervised learning</subject><issn>2381-8549</issn><isbn>1665496207</isbn><isbn>9781665496209</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1tLwzAYQKMguIu_QJD8gdYvl-byOIvOwmCy6fNI0i8jc62j6QT_vYJ7OpyXA4eQBwYlY2Afm7p5k6rSquTAeWmN1VzAFZkypSppFQd9TSZcGFaYP78l05wPAByYYBNittilYns-4fCdMrZ04_rP1O9p_Bro2h8wjLTp3B7p0_E80EXOmHOH_TgnN9EdM95dOCMfL8_v9WuxWi-berEqEgcxFt6HCIgqiuhBu6iUrFhrvKmEVEG4IHVQ2itjQaNug-AOpOYmtrIV0YKYkfv_bkLE3WlInRt-dpdL8QuJikbq</recordid><startdate>20221016</startdate><enddate>20221016</enddate><creator>Li, Qiang</creator><creator>Yao, Zhaoliang</creator><creator>Wang, Jingjing</creator><creator>Tian, Ye</creator><creator>Yang, Pengju</creator><creator>Xie, Di</creator><creator>Pu, Shiliang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221016</creationdate><title>Semi-Supervised Ranking for Object Image Blur Assessment</title><author>Li, Qiang ; Yao, Zhaoliang ; Wang, Jingjing ; Tian, Ye ; Yang, Pengju ; Xie, Di ; Pu, Shiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-bbcf0ee6f3fb07af66451d8b85346c3ac47c67b68907e7dc32a04728fd4d3f903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Face recognition</topic><topic>Image processing</topic><topic>Object image blur assessment</topic><topic>Object recognition</topic><topic>Pairwise ranking</topic><topic>Quadruplet ranking</topic><topic>Reliability</topic><topic>Self-supervised learning</topic><topic>Semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yao, Zhaoliang</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Yang, Pengju</creatorcontrib><creatorcontrib>Xie, Di</creatorcontrib><creatorcontrib>Pu, Shiliang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Qiang</au><au>Yao, Zhaoliang</au><au>Wang, Jingjing</au><au>Tian, Ye</au><au>Yang, Pengju</au><au>Xie, Di</au><au>Pu, Shiliang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semi-Supervised Ranking for Object Image Blur Assessment</atitle><btitle>2022 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2022-10-16</date><risdate>2022</risdate><spage>21</spage><epage>25</epage><pages>21-25</pages><eissn>2381-8549</eissn><eisbn>1665496207</eisbn><eisbn>9781665496209</eisbn><abstract>Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method. Source of labeled datasets: https://github.com/yzliangHIK2022/SSRanking-for-Object-BA</abstract><pub>IEEE</pub><doi>10.1109/ICIP46576.2022.9897230</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2381-8549 |
ispartof | 2022 IEEE International Conference on Image Processing (ICIP), 2022, p.21-25 |
issn | 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_9897230 |
source | IEEE Xplore All Conference Series |
subjects | Face recognition Image processing Object image blur assessment Object recognition Pairwise ranking Quadruplet ranking Reliability Self-supervised learning Semi-supervised learning Semisupervised learning Supervised learning |
title | Semi-Supervised Ranking for Object Image Blur Assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semi-Supervised%20Ranking%20for%20Object%20Image%20Blur%20Assessment&rft.btitle=2022%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Li,%20Qiang&rft.date=2022-10-16&rft.spage=21&rft.epage=25&rft.pages=21-25&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP46576.2022.9897230&rft.eisbn=1665496207&rft.eisbn_list=9781665496209&rft_dat=%3Cieee_CHZPO%3E9897230%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-bbcf0ee6f3fb07af66451d8b85346c3ac47c67b68907e7dc32a04728fd4d3f903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9897230&rfr_iscdi=true |