Loading…
Building Inspection Toolkit: Unified Evaluation And Strong Baselines For Bridge Damage Recognition
In recent years, several companies and researchers have started to tackle the problem of damage recognition within the scope of automated inspection of built structures. While companies are neither willing to publish associated data nor models, researchers are facing the problem of data shortage on...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1225 |
container_issue | |
container_start_page | 1221 |
container_title | |
container_volume | |
creator | Flotzinger, Johannes Rosch, Philipp J. Oswald, Norbert Braml, Thomas |
description | In recent years, several companies and researchers have started to tackle the problem of damage recognition within the scope of automated inspection of built structures. While companies are neither willing to publish associated data nor models, researchers are facing the problem of data shortage on one hand and inconsistent dataset splitting with the absence of consistent metrics on the other hand. This leads to incomparable results. Therefore, we introduce the building inspection toolkit - bikit - which acts as a simple to use data hub containing relevant open-source datasets in the field of damage recognition. The datasets are enriched with evaluation splits and predefined metrics, suiting the specific task and their data distribution. For the sake of compatibility and to motivate researchers in this domain, we also provide a leaderboard and the possibility to share model weights with the community. As a starting point we provide strong baselines utilizing extensive hyperparameter search using three transfer learning approaches for state-of-the-art algorithms. The toolkit 1 and the leaderboard 2 are available online. |
doi_str_mv | 10.1109/ICIP46576.2022.9897743 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9897743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9897743</ieee_id><sourcerecordid>9897743</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-44a68b2d82cdf18394dfc8b742f1e7f7ee7d7b901c4bc4abf54aea8ad84b7f3f3</originalsourceid><addsrcrecordid>eNotkN9KwzAchaMguE2fQJC8QGf-tUm9W-umhYGi2_VIml9KtEtH0wl7e6vu6uNw-M7FQeiekjmlJH-oyupNZKnM5owwNs9VLqXgF2hKsywVecaIvEQTxhVN1Jiv0TTGT0IYoZxOkCmOvrU-NLgK8QD14LuAN13XfvnhEW-Ddx4sXn7r9qj_ukWw-GPou9EodITWB4h41fW46L1tAD_pvR7xDnXXBP-r3KArp9sIt2fO0Ha13JQvyfr1uSoX68RTzodECJ0pw6xitXVU8VxYVysjBXMUpJMA0kqTE1oLUwttXCo0aKWtEkY67vgM3f3vegDYHXq_1_1pd_6D_wC9CFdx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Building Inspection Toolkit: Unified Evaluation And Strong Baselines For Bridge Damage Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Flotzinger, Johannes ; Rosch, Philipp J. ; Oswald, Norbert ; Braml, Thomas</creator><creatorcontrib>Flotzinger, Johannes ; Rosch, Philipp J. ; Oswald, Norbert ; Braml, Thomas</creatorcontrib><description>In recent years, several companies and researchers have started to tackle the problem of damage recognition within the scope of automated inspection of built structures. While companies are neither willing to publish associated data nor models, researchers are facing the problem of data shortage on one hand and inconsistent dataset splitting with the absence of consistent metrics on the other hand. This leads to incomparable results. Therefore, we introduce the building inspection toolkit - bikit - which acts as a simple to use data hub containing relevant open-source datasets in the field of damage recognition. The datasets are enriched with evaluation splits and predefined metrics, suiting the specific task and their data distribution. For the sake of compatibility and to motivate researchers in this domain, we also provide a leaderboard and the possibility to share model weights with the community. As a starting point we provide strong baselines utilizing extensive hyperparameter search using three transfer learning approaches for state-of-the-art algorithms. The toolkit 1 and the leaderboard 2 are available online.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665496207</identifier><identifier>EISBN: 9781665496209</identifier><identifier>DOI: 10.1109/ICIP46576.2022.9897743</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Bridges ; building damage recognition ; Buildings ; Companies ; deep learning ; Image recognition ; Measurement ; Transfer learning</subject><ispartof>2022 IEEE International Conference on Image Processing (ICIP), 2022, p.1221-1225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9897743$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9897743$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flotzinger, Johannes</creatorcontrib><creatorcontrib>Rosch, Philipp J.</creatorcontrib><creatorcontrib>Oswald, Norbert</creatorcontrib><creatorcontrib>Braml, Thomas</creatorcontrib><title>Building Inspection Toolkit: Unified Evaluation And Strong Baselines For Bridge Damage Recognition</title><title>2022 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>In recent years, several companies and researchers have started to tackle the problem of damage recognition within the scope of automated inspection of built structures. While companies are neither willing to publish associated data nor models, researchers are facing the problem of data shortage on one hand and inconsistent dataset splitting with the absence of consistent metrics on the other hand. This leads to incomparable results. Therefore, we introduce the building inspection toolkit - bikit - which acts as a simple to use data hub containing relevant open-source datasets in the field of damage recognition. The datasets are enriched with evaluation splits and predefined metrics, suiting the specific task and their data distribution. For the sake of compatibility and to motivate researchers in this domain, we also provide a leaderboard and the possibility to share model weights with the community. As a starting point we provide strong baselines utilizing extensive hyperparameter search using three transfer learning approaches for state-of-the-art algorithms. The toolkit 1 and the leaderboard 2 are available online.</description><subject>Adaptation models</subject><subject>Bridges</subject><subject>building damage recognition</subject><subject>Buildings</subject><subject>Companies</subject><subject>deep learning</subject><subject>Image recognition</subject><subject>Measurement</subject><subject>Transfer learning</subject><issn>2381-8549</issn><isbn>1665496207</isbn><isbn>9781665496209</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN9KwzAchaMguE2fQJC8QGf-tUm9W-umhYGi2_VIml9KtEtH0wl7e6vu6uNw-M7FQeiekjmlJH-oyupNZKnM5owwNs9VLqXgF2hKsywVecaIvEQTxhVN1Jiv0TTGT0IYoZxOkCmOvrU-NLgK8QD14LuAN13XfvnhEW-Ddx4sXn7r9qj_ukWw-GPou9EodITWB4h41fW46L1tAD_pvR7xDnXXBP-r3KArp9sIt2fO0Ha13JQvyfr1uSoX68RTzodECJ0pw6xitXVU8VxYVysjBXMUpJMA0kqTE1oLUwttXCo0aKWtEkY67vgM3f3vegDYHXq_1_1pd_6D_wC9CFdx</recordid><startdate>20221016</startdate><enddate>20221016</enddate><creator>Flotzinger, Johannes</creator><creator>Rosch, Philipp J.</creator><creator>Oswald, Norbert</creator><creator>Braml, Thomas</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221016</creationdate><title>Building Inspection Toolkit: Unified Evaluation And Strong Baselines For Bridge Damage Recognition</title><author>Flotzinger, Johannes ; Rosch, Philipp J. ; Oswald, Norbert ; Braml, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-44a68b2d82cdf18394dfc8b742f1e7f7ee7d7b901c4bc4abf54aea8ad84b7f3f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Bridges</topic><topic>building damage recognition</topic><topic>Buildings</topic><topic>Companies</topic><topic>deep learning</topic><topic>Image recognition</topic><topic>Measurement</topic><topic>Transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Flotzinger, Johannes</creatorcontrib><creatorcontrib>Rosch, Philipp J.</creatorcontrib><creatorcontrib>Oswald, Norbert</creatorcontrib><creatorcontrib>Braml, Thomas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flotzinger, Johannes</au><au>Rosch, Philipp J.</au><au>Oswald, Norbert</au><au>Braml, Thomas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Building Inspection Toolkit: Unified Evaluation And Strong Baselines For Bridge Damage Recognition</atitle><btitle>2022 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2022-10-16</date><risdate>2022</risdate><spage>1221</spage><epage>1225</epage><pages>1221-1225</pages><eissn>2381-8549</eissn><eisbn>1665496207</eisbn><eisbn>9781665496209</eisbn><abstract>In recent years, several companies and researchers have started to tackle the problem of damage recognition within the scope of automated inspection of built structures. While companies are neither willing to publish associated data nor models, researchers are facing the problem of data shortage on one hand and inconsistent dataset splitting with the absence of consistent metrics on the other hand. This leads to incomparable results. Therefore, we introduce the building inspection toolkit - bikit - which acts as a simple to use data hub containing relevant open-source datasets in the field of damage recognition. The datasets are enriched with evaluation splits and predefined metrics, suiting the specific task and their data distribution. For the sake of compatibility and to motivate researchers in this domain, we also provide a leaderboard and the possibility to share model weights with the community. As a starting point we provide strong baselines utilizing extensive hyperparameter search using three transfer learning approaches for state-of-the-art algorithms. The toolkit 1 and the leaderboard 2 are available online.</abstract><pub>IEEE</pub><doi>10.1109/ICIP46576.2022.9897743</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2381-8549 |
ispartof | 2022 IEEE International Conference on Image Processing (ICIP), 2022, p.1221-1225 |
issn | 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_9897743 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Bridges building damage recognition Buildings Companies deep learning Image recognition Measurement Transfer learning |
title | Building Inspection Toolkit: Unified Evaluation And Strong Baselines For Bridge Damage Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Building%20Inspection%20Toolkit:%20Unified%20Evaluation%20And%20Strong%20Baselines%20For%20Bridge%20Damage%20Recognition&rft.btitle=2022%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Flotzinger,%20Johannes&rft.date=2022-10-16&rft.spage=1221&rft.epage=1225&rft.pages=1221-1225&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP46576.2022.9897743&rft.eisbn=1665496207&rft.eisbn_list=9781665496209&rft_dat=%3Cieee_CHZPO%3E9897743%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-44a68b2d82cdf18394dfc8b742f1e7f7ee7d7b901c4bc4abf54aea8ad84b7f3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9897743&rfr_iscdi=true |