Loading…

Dual-Scale Single Image Dehazing Via Neural Augmentation

Model-based single image dehazing algorithms restore haze-free images with sharp edges and rich details for real-world hazy images at the expense of low PSNR and SSIM values for synthetic hazy images. Data-driven ones restore haze-free images with high PSNR and SSIM values for synthetic hazy images...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2022, Vol.31, p.1-1
Main Authors: Li, Z. G., Zheng, C. B., Shu, H. Y., Wu, S. Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Model-based single image dehazing algorithms restore haze-free images with sharp edges and rich details for real-world hazy images at the expense of low PSNR and SSIM values for synthetic hazy images. Data-driven ones restore haze-free images with high PSNR and SSIM values for synthetic hazy images but with low contrast, and even some remaining haze for real-world hazy images. In this paper, a novel single image dehazing algorithm is introduced by combining model-based and data-driven approaches. Both transmission map and atmospheric light are first estimated by the model-based methods, and then refined by dual-scale generative adversarial networks (GANs) based approaches. The resultant algorithm forms a neural augmentation which converges very fast while the corresponding data-driven approach might not converge. Haze-free images are restored by using the estimated transmission map and atmospheric light as well as the Koschmieder's law. Experimental results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2022.3207571