Loading…
An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems
The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) < -E0I or R (x) < -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to f...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1147 |
container_issue | |
container_start_page | 1143 |
container_title | |
container_volume | |
creator | Gu, Huiling Sun, Yimin |
description | The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) < -E0I or R (x) < -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to find the precise value of its roots by radicals for a univariate polynomial with degree more than 4. In this paper, we mainly discuss the case which all entries in R are polynomials and give a feasible algorithm to verify the condition R(t) |
doi_str_mv | 10.23919/CCC55666.2022.9902217 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9902217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9902217</ieee_id><sourcerecordid>9902217</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-944ab8836ce0525c3c135023d071c6723e5b7d82c7c8c4ca4d4ff3393ea11a6f3</originalsourceid><addsrcrecordid>eNotkMtOwzAURA0SEqX0C5DQ_YEU2zd-LasI2koFFgW2leM41MhNIDYS-XuK6GZmcUZnMYTcMjrnaJi5q6pKCCnlnFPO58Yck6kzMjNKG62V0EygPCcTziQruOHqklyl9EGppIbhhNSLDhbxvR9C3h8g9_Dmh9COYKGKNiXoW3i0eQg_sO7817eNIQefIHSQ9x6Wsa9thG22dTiS8W_-1HcxdN4OsB1T9od0TS5aG5OfnXpKXh_uX6pVsXlerqvFpgicYi5MWdpaa5TOU8GFQ8dQUI4NVcxJxdGLWjWaO-W0K50tm7JtEQ16y5iVLU7Jzb83eO93n0M42GHcnS7BX5MPVfo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems</title><source>IEEE Xplore All Conference Series</source><creator>Gu, Huiling ; Sun, Yimin</creator><creatorcontrib>Gu, Huiling ; Sun, Yimin</creatorcontrib><description>The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) < -E0I or R (x) < -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to find the precise value of its roots by radicals for a univariate polynomial with degree more than 4. In this paper, we mainly discuss the case which all entries in R are polynomials and give a feasible algorithm to verify the condition R(t) <-E0I or R(x) < -E0I. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on real algebraic geometry and mathematics mechanization method. Finally, the authors will give some examples to show the application of our results.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9789887581536</identifier><identifier>EISBN: 9887581534</identifier><identifier>DOI: 10.23919/CCC55666.2022.9902217</identifier><language>eng</language><publisher>Technical Committee on Control Theory, Chinese Association of Automation</publisher><subject>complete discrimination system ; Control theory ; Geometry ; Global stability ; Linear matrix inequalities ; mathematics mechanization ; Nonlinear systems ; polynomial ; Scientific computing ; Stability analysis</subject><ispartof>2022 41st Chinese Control Conference (CCC), 2022, p.1143-1147</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9902217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9902217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gu, Huiling</creatorcontrib><creatorcontrib>Sun, Yimin</creatorcontrib><title>An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems</title><title>2022 41st Chinese Control Conference (CCC)</title><addtitle>CCC</addtitle><description>The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) < -E0I or R (x) < -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to find the precise value of its roots by radicals for a univariate polynomial with degree more than 4. In this paper, we mainly discuss the case which all entries in R are polynomials and give a feasible algorithm to verify the condition R(t) <-E0I or R(x) < -E0I. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on real algebraic geometry and mathematics mechanization method. Finally, the authors will give some examples to show the application of our results.</description><subject>complete discrimination system</subject><subject>Control theory</subject><subject>Geometry</subject><subject>Global stability</subject><subject>Linear matrix inequalities</subject><subject>mathematics mechanization</subject><subject>Nonlinear systems</subject><subject>polynomial</subject><subject>Scientific computing</subject><subject>Stability analysis</subject><issn>2161-2927</issn><isbn>9789887581536</isbn><isbn>9887581534</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURA0SEqX0C5DQ_YEU2zd-LasI2koFFgW2leM41MhNIDYS-XuK6GZmcUZnMYTcMjrnaJi5q6pKCCnlnFPO58Yck6kzMjNKG62V0EygPCcTziQruOHqklyl9EGppIbhhNSLDhbxvR9C3h8g9_Dmh9COYKGKNiXoW3i0eQg_sO7817eNIQefIHSQ9x6Wsa9thG22dTiS8W_-1HcxdN4OsB1T9od0TS5aG5OfnXpKXh_uX6pVsXlerqvFpgicYi5MWdpaa5TOU8GFQ8dQUI4NVcxJxdGLWjWaO-W0K50tm7JtEQ16y5iVLU7Jzb83eO93n0M42GHcnS7BX5MPVfo</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Gu, Huiling</creator><creator>Sun, Yimin</creator><general>Technical Committee on Control Theory, Chinese Association of Automation</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220725</creationdate><title>An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems</title><author>Gu, Huiling ; Sun, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-944ab8836ce0525c3c135023d071c6723e5b7d82c7c8c4ca4d4ff3393ea11a6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>complete discrimination system</topic><topic>Control theory</topic><topic>Geometry</topic><topic>Global stability</topic><topic>Linear matrix inequalities</topic><topic>mathematics mechanization</topic><topic>Nonlinear systems</topic><topic>polynomial</topic><topic>Scientific computing</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Gu, Huiling</creatorcontrib><creatorcontrib>Sun, Yimin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu, Huiling</au><au>Sun, Yimin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems</atitle><btitle>2022 41st Chinese Control Conference (CCC)</btitle><stitle>CCC</stitle><date>2022-07-25</date><risdate>2022</risdate><spage>1143</spage><epage>1147</epage><pages>1143-1147</pages><eissn>2161-2927</eissn><eisbn>9789887581536</eisbn><eisbn>9887581534</eisbn><abstract>The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) < -E0I or R (x) < -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to find the precise value of its roots by radicals for a univariate polynomial with degree more than 4. In this paper, we mainly discuss the case which all entries in R are polynomials and give a feasible algorithm to verify the condition R(t) <-E0I or R(x) < -E0I. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on real algebraic geometry and mathematics mechanization method. Finally, the authors will give some examples to show the application of our results.</abstract><pub>Technical Committee on Control Theory, Chinese Association of Automation</pub><doi>10.23919/CCC55666.2022.9902217</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-2927 |
ispartof | 2022 41st Chinese Control Conference (CCC), 2022, p.1143-1147 |
issn | 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_9902217 |
source | IEEE Xplore All Conference Series |
subjects | complete discrimination system Control theory Geometry Global stability Linear matrix inequalities mathematics mechanization Nonlinear systems polynomial Scientific computing Stability analysis |
title | An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Algorithm%20to%20Verify%20a%20Class%20of%20Matrix%20Inequalities%20in%20the%20Global%20Stability%20of%20Nonlinear%20Systems&rft.btitle=2022%2041st%20Chinese%20Control%20Conference%20(CCC)&rft.au=Gu,%20Huiling&rft.date=2022-07-25&rft.spage=1143&rft.epage=1147&rft.pages=1143-1147&rft.eissn=2161-2927&rft_id=info:doi/10.23919/CCC55666.2022.9902217&rft.eisbn=9789887581536&rft.eisbn_list=9887581534&rft_dat=%3Cieee_CHZPO%3E9902217%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-944ab8836ce0525c3c135023d071c6723e5b7d82c7c8c4ca4d4ff3393ea11a6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9902217&rfr_iscdi=true |