Loading…

An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems

The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) < -E0I or R (x) < -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to f...

Full description

Saved in:
Bibliographic Details
Main Authors: Gu, Huiling, Sun, Yimin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1147
container_issue
container_start_page 1143
container_title
container_volume
creator Gu, Huiling
Sun, Yimin
description The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) < -E0I or R (x) < -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to find the precise value of its roots by radicals for a univariate polynomial with degree more than 4. In this paper, we mainly discuss the case which all entries in R are polynomials and give a feasible algorithm to verify the condition R(t)
doi_str_mv 10.23919/CCC55666.2022.9902217
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9902217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9902217</ieee_id><sourcerecordid>9902217</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-944ab8836ce0525c3c135023d071c6723e5b7d82c7c8c4ca4d4ff3393ea11a6f3</originalsourceid><addsrcrecordid>eNotkMtOwzAURA0SEqX0C5DQ_YEU2zd-LasI2koFFgW2leM41MhNIDYS-XuK6GZmcUZnMYTcMjrnaJi5q6pKCCnlnFPO58Yck6kzMjNKG62V0EygPCcTziQruOHqklyl9EGppIbhhNSLDhbxvR9C3h8g9_Dmh9COYKGKNiXoW3i0eQg_sO7817eNIQefIHSQ9x6Wsa9thG22dTiS8W_-1HcxdN4OsB1T9od0TS5aG5OfnXpKXh_uX6pVsXlerqvFpgicYi5MWdpaa5TOU8GFQ8dQUI4NVcxJxdGLWjWaO-W0K50tm7JtEQ16y5iVLU7Jzb83eO93n0M42GHcnS7BX5MPVfo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems</title><source>IEEE Xplore All Conference Series</source><creator>Gu, Huiling ; Sun, Yimin</creator><creatorcontrib>Gu, Huiling ; Sun, Yimin</creatorcontrib><description>The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) &lt; -E0I or R (x) &lt; -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to find the precise value of its roots by radicals for a univariate polynomial with degree more than 4. In this paper, we mainly discuss the case which all entries in R are polynomials and give a feasible algorithm to verify the condition R(t) &lt;-E0I or R(x) &lt; -E0I. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on real algebraic geometry and mathematics mechanization method. Finally, the authors will give some examples to show the application of our results.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9789887581536</identifier><identifier>EISBN: 9887581534</identifier><identifier>DOI: 10.23919/CCC55666.2022.9902217</identifier><language>eng</language><publisher>Technical Committee on Control Theory, Chinese Association of Automation</publisher><subject>complete discrimination system ; Control theory ; Geometry ; Global stability ; Linear matrix inequalities ; mathematics mechanization ; Nonlinear systems ; polynomial ; Scientific computing ; Stability analysis</subject><ispartof>2022 41st Chinese Control Conference (CCC), 2022, p.1143-1147</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9902217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9902217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gu, Huiling</creatorcontrib><creatorcontrib>Sun, Yimin</creatorcontrib><title>An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems</title><title>2022 41st Chinese Control Conference (CCC)</title><addtitle>CCC</addtitle><description>The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) &lt; -E0I or R (x) &lt; -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to find the precise value of its roots by radicals for a univariate polynomial with degree more than 4. In this paper, we mainly discuss the case which all entries in R are polynomials and give a feasible algorithm to verify the condition R(t) &lt;-E0I or R(x) &lt; -E0I. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on real algebraic geometry and mathematics mechanization method. Finally, the authors will give some examples to show the application of our results.</description><subject>complete discrimination system</subject><subject>Control theory</subject><subject>Geometry</subject><subject>Global stability</subject><subject>Linear matrix inequalities</subject><subject>mathematics mechanization</subject><subject>Nonlinear systems</subject><subject>polynomial</subject><subject>Scientific computing</subject><subject>Stability analysis</subject><issn>2161-2927</issn><isbn>9789887581536</isbn><isbn>9887581534</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURA0SEqX0C5DQ_YEU2zd-LasI2koFFgW2leM41MhNIDYS-XuK6GZmcUZnMYTcMjrnaJi5q6pKCCnlnFPO58Yck6kzMjNKG62V0EygPCcTziQruOHqklyl9EGppIbhhNSLDhbxvR9C3h8g9_Dmh9COYKGKNiXoW3i0eQg_sO7817eNIQefIHSQ9x6Wsa9thG22dTiS8W_-1HcxdN4OsB1T9od0TS5aG5OfnXpKXh_uX6pVsXlerqvFpgicYi5MWdpaa5TOU8GFQ8dQUI4NVcxJxdGLWjWaO-W0K50tm7JtEQ16y5iVLU7Jzb83eO93n0M42GHcnS7BX5MPVfo</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Gu, Huiling</creator><creator>Sun, Yimin</creator><general>Technical Committee on Control Theory, Chinese Association of Automation</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220725</creationdate><title>An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems</title><author>Gu, Huiling ; Sun, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-944ab8836ce0525c3c135023d071c6723e5b7d82c7c8c4ca4d4ff3393ea11a6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>complete discrimination system</topic><topic>Control theory</topic><topic>Geometry</topic><topic>Global stability</topic><topic>Linear matrix inequalities</topic><topic>mathematics mechanization</topic><topic>Nonlinear systems</topic><topic>polynomial</topic><topic>Scientific computing</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Gu, Huiling</creatorcontrib><creatorcontrib>Sun, Yimin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu, Huiling</au><au>Sun, Yimin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems</atitle><btitle>2022 41st Chinese Control Conference (CCC)</btitle><stitle>CCC</stitle><date>2022-07-25</date><risdate>2022</risdate><spage>1143</spage><epage>1147</epage><pages>1143-1147</pages><eissn>2161-2927</eissn><eisbn>9789887581536</eisbn><eisbn>9887581534</eisbn><abstract>The global stability and stabilization for nonlinear systems is a challenging problem in control theory. The conditions like R(t) &lt; -E0I or R (x) &lt; -E0I often appeared in many related literature. Obviously, to verify this condition is not easy, partly because there is not a general method to find the precise value of its roots by radicals for a univariate polynomial with degree more than 4. In this paper, we mainly discuss the case which all entries in R are polynomials and give a feasible algorithm to verify the condition R(t) &lt;-E0I or R(x) &lt; -E0I. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on real algebraic geometry and mathematics mechanization method. Finally, the authors will give some examples to show the application of our results.</abstract><pub>Technical Committee on Control Theory, Chinese Association of Automation</pub><doi>10.23919/CCC55666.2022.9902217</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-2927
ispartof 2022 41st Chinese Control Conference (CCC), 2022, p.1143-1147
issn 2161-2927
language eng
recordid cdi_ieee_primary_9902217
source IEEE Xplore All Conference Series
subjects complete discrimination system
Control theory
Geometry
Global stability
Linear matrix inequalities
mathematics mechanization
Nonlinear systems
polynomial
Scientific computing
Stability analysis
title An Algorithm to Verify a Class of Matrix Inequalities in the Global Stability of Nonlinear Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Algorithm%20to%20Verify%20a%20Class%20of%20Matrix%20Inequalities%20in%20the%20Global%20Stability%20of%20Nonlinear%20Systems&rft.btitle=2022%2041st%20Chinese%20Control%20Conference%20(CCC)&rft.au=Gu,%20Huiling&rft.date=2022-07-25&rft.spage=1143&rft.epage=1147&rft.pages=1143-1147&rft.eissn=2161-2927&rft_id=info:doi/10.23919/CCC55666.2022.9902217&rft.eisbn=9789887581536&rft.eisbn_list=9887581534&rft_dat=%3Cieee_CHZPO%3E9902217%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-944ab8836ce0525c3c135023d071c6723e5b7d82c7c8c4ca4d4ff3393ea11a6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9902217&rfr_iscdi=true