Loading…
Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models
Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate dat...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2023-01, Vol.29 (1), p.613-623 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33 |
container_end_page | 623 |
container_issue | 1 |
container_start_page | 613 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 29 |
creator | Athawale, Tushar M. Johnson, Chris R. Sane, Sudhanshu Pugmire, David |
description | Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets. |
doi_str_mv | 10.1109/TVCG.2022.3209424 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903471</ieee_id><sourcerecordid>2718636617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33</originalsourceid><addsrcrecordid>eNpdkEtrHDEMgE1paV79AaVQDL3kMlu_vT622zwKadJDHsdBa2uow-x4Y3sK6a_PLLtJoCcJ6ZOQPkI-cjbjnLmv17eLs5lgQsykYE4J9Ybsc6d4wzQzb6ecWdsII8weOSjlnjGu1Ny9J3vScK2VYfsETuMSM70ZPOYKcaiP9DaWEfr4D2pMA-1Spt_jX8gRKtIfUIHexfqH_oYMK6w5egpDoJdpWL9WLlMsSH-lgH05Iu866At-2MVDcnN6cr04by6uzn4uvl00XipXG2eNnBsDxkvGuWcelLM6oA9LQO4goPNhjkJ6I7tuehaM0MKiRqFD8FIekuPt3nVODyOW2q5i8dj3MGAaSyssnxtpDLcT-uU_9D6NeZiumyhttLbaiYniW8rnVErGrl3nuIL82HLWbvy3G__txn-78z_NfN5tHpcrDC8Tz8In4NMWiIj40naOSWW5fALCN4mv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756557592</pqid></control><display><type>article</type><title>Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Athawale, Tushar M. ; Johnson, Chris R. ; Sane, Sudhanshu ; Pugmire, David</creator><creatorcontrib>Athawale, Tushar M. ; Johnson, Chris R. ; Sane, Sudhanshu ; Pugmire, David</creatorcontrib><description>Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2022.3209424</identifier><identifier>PMID: 36155460</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>and probability ; Bivariate analysis ; Data models ; Data visualization ; fiber surfaces ; Fibers ; Histograms ; Multivariate analysis ; Nonparametric statistics ; Numerical integration ; Optical fiber sensors ; Power capacitors ; Probability ; Probability distribution ; Scientific visualization ; Shape ; Statistical analysis ; Uncertainty ; Uncertainty analysis ; Uncertainty visualization ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2023-01, Vol.29 (1), p.613-623</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33</citedby><cites>FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33</cites><orcidid>0000-0003-0647-2634 ; 0000-0001-5673-5338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903471$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36155460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Johnson, Chris R.</creatorcontrib><creatorcontrib>Sane, Sudhanshu</creatorcontrib><creatorcontrib>Pugmire, David</creatorcontrib><title>Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.</description><subject>and probability</subject><subject>Bivariate analysis</subject><subject>Data models</subject><subject>Data visualization</subject><subject>fiber surfaces</subject><subject>Fibers</subject><subject>Histograms</subject><subject>Multivariate analysis</subject><subject>Nonparametric statistics</subject><subject>Numerical integration</subject><subject>Optical fiber sensors</subject><subject>Power capacitors</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Scientific visualization</subject><subject>Shape</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>Uncertainty visualization</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEtrHDEMgE1paV79AaVQDL3kMlu_vT622zwKadJDHsdBa2uow-x4Y3sK6a_PLLtJoCcJ6ZOQPkI-cjbjnLmv17eLs5lgQsykYE4J9Ybsc6d4wzQzb6ecWdsII8weOSjlnjGu1Ny9J3vScK2VYfsETuMSM70ZPOYKcaiP9DaWEfr4D2pMA-1Spt_jX8gRKtIfUIHexfqH_oYMK6w5egpDoJdpWL9WLlMsSH-lgH05Iu866At-2MVDcnN6cr04by6uzn4uvl00XipXG2eNnBsDxkvGuWcelLM6oA9LQO4goPNhjkJ6I7tuehaM0MKiRqFD8FIekuPt3nVODyOW2q5i8dj3MGAaSyssnxtpDLcT-uU_9D6NeZiumyhttLbaiYniW8rnVErGrl3nuIL82HLWbvy3G__txn-78z_NfN5tHpcrDC8Tz8In4NMWiIj40naOSWW5fALCN4mv</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Athawale, Tushar M.</creator><creator>Johnson, Chris R.</creator><creator>Sane, Sudhanshu</creator><creator>Pugmire, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0647-2634</orcidid><orcidid>https://orcid.org/0000-0001-5673-5338</orcidid></search><sort><creationdate>202301</creationdate><title>Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models</title><author>Athawale, Tushar M. ; Johnson, Chris R. ; Sane, Sudhanshu ; Pugmire, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>and probability</topic><topic>Bivariate analysis</topic><topic>Data models</topic><topic>Data visualization</topic><topic>fiber surfaces</topic><topic>Fibers</topic><topic>Histograms</topic><topic>Multivariate analysis</topic><topic>Nonparametric statistics</topic><topic>Numerical integration</topic><topic>Optical fiber sensors</topic><topic>Power capacitors</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Scientific visualization</topic><topic>Shape</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>Uncertainty visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Johnson, Chris R.</creatorcontrib><creatorcontrib>Sane, Sudhanshu</creatorcontrib><creatorcontrib>Pugmire, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athawale, Tushar M.</au><au>Johnson, Chris R.</au><au>Sane, Sudhanshu</au><au>Pugmire, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2023-01</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>613</spage><epage>623</epage><pages>613-623</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36155460</pmid><doi>10.1109/TVCG.2022.3209424</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0647-2634</orcidid><orcidid>https://orcid.org/0000-0001-5673-5338</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2023-01, Vol.29 (1), p.613-623 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_ieee_primary_9903471 |
source | IEEE Electronic Library (IEL) Journals |
subjects | and probability Bivariate analysis Data models Data visualization fiber surfaces Fibers Histograms Multivariate analysis Nonparametric statistics Numerical integration Optical fiber sensors Power capacitors Probability Probability distribution Scientific visualization Shape Statistical analysis Uncertainty Uncertainty analysis Uncertainty visualization Visualization |
title | Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20Uncertainty%20Visualization%20for%20Bivariate%20Data%20With%20Parametric%20and%20Nonparametric%20Noise%20Models&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Athawale,%20Tushar%20M.&rft.date=2023-01&rft.volume=29&rft.issue=1&rft.spage=613&rft.epage=623&rft.pages=613-623&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2022.3209424&rft_dat=%3Cproquest_ieee_%3E2718636617%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756557592&rft_id=info:pmid/36155460&rft_ieee_id=9903471&rfr_iscdi=true |