Loading…

Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models

Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate dat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2023-01, Vol.29 (1), p.613-623
Main Authors: Athawale, Tushar M., Johnson, Chris R., Sane, Sudhanshu, Pugmire, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33
cites cdi_FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33
container_end_page 623
container_issue 1
container_start_page 613
container_title IEEE transactions on visualization and computer graphics
container_volume 29
creator Athawale, Tushar M.
Johnson, Chris R.
Sane, Sudhanshu
Pugmire, David
description Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.
doi_str_mv 10.1109/TVCG.2022.3209424
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903471</ieee_id><sourcerecordid>2718636617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33</originalsourceid><addsrcrecordid>eNpdkEtrHDEMgE1paV79AaVQDL3kMlu_vT622zwKadJDHsdBa2uow-x4Y3sK6a_PLLtJoCcJ6ZOQPkI-cjbjnLmv17eLs5lgQsykYE4J9Ybsc6d4wzQzb6ecWdsII8weOSjlnjGu1Ny9J3vScK2VYfsETuMSM70ZPOYKcaiP9DaWEfr4D2pMA-1Spt_jX8gRKtIfUIHexfqH_oYMK6w5egpDoJdpWL9WLlMsSH-lgH05Iu866At-2MVDcnN6cr04by6uzn4uvl00XipXG2eNnBsDxkvGuWcelLM6oA9LQO4goPNhjkJ6I7tuehaM0MKiRqFD8FIekuPt3nVODyOW2q5i8dj3MGAaSyssnxtpDLcT-uU_9D6NeZiumyhttLbaiYniW8rnVErGrl3nuIL82HLWbvy3G__txn-78z_NfN5tHpcrDC8Tz8In4NMWiIj40naOSWW5fALCN4mv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756557592</pqid></control><display><type>article</type><title>Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Athawale, Tushar M. ; Johnson, Chris R. ; Sane, Sudhanshu ; Pugmire, David</creator><creatorcontrib>Athawale, Tushar M. ; Johnson, Chris R. ; Sane, Sudhanshu ; Pugmire, David</creatorcontrib><description>Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2022.3209424</identifier><identifier>PMID: 36155460</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>and probability ; Bivariate analysis ; Data models ; Data visualization ; fiber surfaces ; Fibers ; Histograms ; Multivariate analysis ; Nonparametric statistics ; Numerical integration ; Optical fiber sensors ; Power capacitors ; Probability ; Probability distribution ; Scientific visualization ; Shape ; Statistical analysis ; Uncertainty ; Uncertainty analysis ; Uncertainty visualization ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2023-01, Vol.29 (1), p.613-623</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33</citedby><cites>FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33</cites><orcidid>0000-0003-0647-2634 ; 0000-0001-5673-5338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903471$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36155460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Johnson, Chris R.</creatorcontrib><creatorcontrib>Sane, Sudhanshu</creatorcontrib><creatorcontrib>Pugmire, David</creatorcontrib><title>Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.</description><subject>and probability</subject><subject>Bivariate analysis</subject><subject>Data models</subject><subject>Data visualization</subject><subject>fiber surfaces</subject><subject>Fibers</subject><subject>Histograms</subject><subject>Multivariate analysis</subject><subject>Nonparametric statistics</subject><subject>Numerical integration</subject><subject>Optical fiber sensors</subject><subject>Power capacitors</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Scientific visualization</subject><subject>Shape</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>Uncertainty visualization</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEtrHDEMgE1paV79AaVQDL3kMlu_vT622zwKadJDHsdBa2uow-x4Y3sK6a_PLLtJoCcJ6ZOQPkI-cjbjnLmv17eLs5lgQsykYE4J9Ybsc6d4wzQzb6ecWdsII8weOSjlnjGu1Ny9J3vScK2VYfsETuMSM70ZPOYKcaiP9DaWEfr4D2pMA-1Spt_jX8gRKtIfUIHexfqH_oYMK6w5egpDoJdpWL9WLlMsSH-lgH05Iu866At-2MVDcnN6cr04by6uzn4uvl00XipXG2eNnBsDxkvGuWcelLM6oA9LQO4goPNhjkJ6I7tuehaM0MKiRqFD8FIekuPt3nVODyOW2q5i8dj3MGAaSyssnxtpDLcT-uU_9D6NeZiumyhttLbaiYniW8rnVErGrl3nuIL82HLWbvy3G__txn-78z_NfN5tHpcrDC8Tz8In4NMWiIj40naOSWW5fALCN4mv</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Athawale, Tushar M.</creator><creator>Johnson, Chris R.</creator><creator>Sane, Sudhanshu</creator><creator>Pugmire, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0647-2634</orcidid><orcidid>https://orcid.org/0000-0001-5673-5338</orcidid></search><sort><creationdate>202301</creationdate><title>Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models</title><author>Athawale, Tushar M. ; Johnson, Chris R. ; Sane, Sudhanshu ; Pugmire, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>and probability</topic><topic>Bivariate analysis</topic><topic>Data models</topic><topic>Data visualization</topic><topic>fiber surfaces</topic><topic>Fibers</topic><topic>Histograms</topic><topic>Multivariate analysis</topic><topic>Nonparametric statistics</topic><topic>Numerical integration</topic><topic>Optical fiber sensors</topic><topic>Power capacitors</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Scientific visualization</topic><topic>Shape</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>Uncertainty visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Johnson, Chris R.</creatorcontrib><creatorcontrib>Sane, Sudhanshu</creatorcontrib><creatorcontrib>Pugmire, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athawale, Tushar M.</au><au>Johnson, Chris R.</au><au>Sane, Sudhanshu</au><au>Pugmire, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2023-01</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>613</spage><epage>623</epage><pages>613-623</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36155460</pmid><doi>10.1109/TVCG.2022.3209424</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0647-2634</orcidid><orcidid>https://orcid.org/0000-0001-5673-5338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2023-01, Vol.29 (1), p.613-623
issn 1077-2626
1941-0506
language eng
recordid cdi_ieee_primary_9903471
source IEEE Electronic Library (IEL) Journals
subjects and probability
Bivariate analysis
Data models
Data visualization
fiber surfaces
Fibers
Histograms
Multivariate analysis
Nonparametric statistics
Numerical integration
Optical fiber sensors
Power capacitors
Probability
Probability distribution
Scientific visualization
Shape
Statistical analysis
Uncertainty
Uncertainty analysis
Uncertainty visualization
Visualization
title Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20Uncertainty%20Visualization%20for%20Bivariate%20Data%20With%20Parametric%20and%20Nonparametric%20Noise%20Models&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Athawale,%20Tushar%20M.&rft.date=2023-01&rft.volume=29&rft.issue=1&rft.spage=613&rft.epage=623&rft.pages=613-623&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2022.3209424&rft_dat=%3Cproquest_ieee_%3E2718636617%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-9763866a6c3011c0ca4975decdbae19ade9cd8e23c63ff942a62527e5e25ddc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756557592&rft_id=info:pmid/36155460&rft_ieee_id=9903471&rfr_iscdi=true