Loading…

Investigating the Potential Accuracy of Spaceborne Solar-Induced Chlorophyll Fluorescence Retrieval for 12 Capable Satellites Based on Simulation Data

Remote sensing of solar-induced chlorophyll fluorescence (SIF) has been widely investigated with satellites/sensors covering the spectral range of SIF emission with fine spectral resolutions (SRs). The potential precision of SIF retrievals is limited by instruments' spectral specifications. Her...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13
Main Authors: Zou, Chu, Liu, Liangyun, Du, Shanshan, Liu, Xinjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-200d15af1fb9bcc8d0fccf20159ad3a7833c06122789ef2706f206edefdee2bf3
cites cdi_FETCH-LOGICAL-c223t-200d15af1fb9bcc8d0fccf20159ad3a7833c06122789ef2706f206edefdee2bf3
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Zou, Chu
Liu, Liangyun
Du, Shanshan
Liu, Xinjie
description Remote sensing of solar-induced chlorophyll fluorescence (SIF) has been widely investigated with satellites/sensors covering the spectral range of SIF emission with fine spectral resolutions (SRs). The potential precision of SIF retrievals is limited by instruments' spectral specifications. Here, the influence of spectral characteristics (SR, signal-to-noise ratio (SNR), and spectral coverage) on data-driven SIF retrieval was assessed using simulations, and the SIF retrieval capability of the obsolete, in-orbit, and planned satellites was evaluated from the spectral perspective. As a result, the 757-759- and 735-758-nm fitting windows (FWs) were found to be optimal for far-red SIF retrieval on satellites with fine (< 0.1 nm) and moderate (0.1-0.5 nm) SR. The 682-697-nm FW was found to perform better for red SIF retrievals. For far-red SIF retrievals, Orbiting Carbon Observatory 2 (OCO-2) and TanSat were found to have the best SIF retrieval performance, with a root-mean-square-error (RMSE ^{\ast} ) of lower than 0. 25 mW \cdot \,\,\text{m}^{-2}\,\,\cdot sr ^{-1}\,\,\cdot nm-1, followed by satellites with moderate SRs (0.1-0.5 nm) such as CO2 monitoring (CO2M), TROPOspheric Monitoring Instrument (TROPOMI), and Global Ozone Monitoring Experiment 2 (GOME-2) (RMSE ^{\ast} < 0.5 mW \cdot \,\,\text{m}^{-2}\,\,\cdot sr ^{-1}\,\,\cdot nm-1). The high SNR of SCanning Imaging Absorption Spectro Meter for Atmospheric CHartographY (SCIAMACHY) did not improve the far-red SIF retrieval greatly (RMSE ^{\ast} =0.47 mW \cdot \,\,\text{m}^{-2}\,\,\cdot sr ^{-1}\,\,\cdot nm-1) but obtained a low RMSE ^{\ast} at the red band (0.43 mW \cdot \,\,\text{m}^{-2}\,\,\cdot sr
doi_str_mv 10.1109/TGRS.2022.3210185
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903629</ieee_id><sourcerecordid>2723901211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-200d15af1fb9bcc8d0fccf20159ad3a7833c06122789ef2706f206edefdee2bf3</originalsourceid><addsrcrecordid>eNo9kN1qGzEQhUVpoW7aByi9EeR6Hc3I-6PLxE1cg6ElTq8XrXYUb1BWW0kb8IvkeSvjkKsZmHPOHD7GvoNYAgh19bC53y9RIC4lgoCm_MAWUJZNIarV6iNbCFBVgY3Cz-xLjE9CwKqEesFet-MLxTQ86jSMjzwdiP_xicY0aMevjZmDNkfuLd9P2lDnw0h8750OxXbsZ0M9Xx-cD346HJ3jd272gaKh0RC_pxQGesk51gcOyNd60p3Lfp3IuSFR5Dc65gg_8v3wPLvcIa8_ddJf2SerXaRvb_OC_b27fVj_Kna_N9v19a4wiDIVKEQPpbZgO9UZ0_TCGmNRQKl0L3XdSGlEBYh1o8hiLap8rKgn2xNhZ-UFuzznTsH_mzOI9snPYcwvW6xRKgEIkFVwVpngYwxk2ykMzzocWxDtCX97wt-e8Ldv-LPnx9kzENG7XikhK1TyP1pwg-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901211</pqid></control><display><type>article</type><title>Investigating the Potential Accuracy of Spaceborne Solar-Induced Chlorophyll Fluorescence Retrieval for 12 Capable Satellites Based on Simulation Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zou, Chu ; Liu, Liangyun ; Du, Shanshan ; Liu, Xinjie</creator><creatorcontrib>Zou, Chu ; Liu, Liangyun ; Du, Shanshan ; Liu, Xinjie</creatorcontrib><description><![CDATA[Remote sensing of solar-induced chlorophyll fluorescence (SIF) has been widely investigated with satellites/sensors covering the spectral range of SIF emission with fine spectral resolutions (SRs). The potential precision of SIF retrievals is limited by instruments' spectral specifications. Here, the influence of spectral characteristics (SR, signal-to-noise ratio (SNR), and spectral coverage) on data-driven SIF retrieval was assessed using simulations, and the SIF retrieval capability of the obsolete, in-orbit, and planned satellites was evaluated from the spectral perspective. As a result, the 757-759- and 735-758-nm fitting windows (FWs) were found to be optimal for far-red SIF retrieval on satellites with fine (< 0.1 nm) and moderate (0.1-0.5 nm) SR. The 682-697-nm FW was found to perform better for red SIF retrievals. For far-red SIF retrievals, Orbiting Carbon Observatory 2 (OCO-2) and TanSat were found to have the best SIF retrieval performance, with a root-mean-square-error (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula>) of lower than 0. 25 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1, followed by satellites with moderate SRs (0.1-0.5 nm) such as CO2 monitoring (CO2M), TROPOspheric Monitoring Instrument (TROPOMI), and Global Ozone Monitoring Experiment 2 (GOME-2) (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} < 0.5 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1). The high SNR of SCanning Imaging Absorption Spectro Meter for Atmospheric CHartographY (SCIAMACHY) did not improve the far-red SIF retrieval greatly (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} =0.47 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1) but obtained a low RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula> at the red band (0.43 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1). The highest red SIF retrieval potential was found on TROPOMI, with an RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula> of 0.41 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1. Tropospheric Emissions Monitoring of Pollution (TEMPO) and FLuorescence Explorer (FLEX) gave poor performance (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} >0.9 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1) with their current spectral specifications. Improvement of the spectral characteristics is still needed to obtain precise SIF retrievals.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3210185</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric modeling ; Chlorophyll ; Chlorophylls ; Data-driven algorithm ; Emission analysis ; Fluorescence ; hyperspectral satellites ; Instruments ; Monitoring ; Reflectivity ; Remote sensing ; Retrieval ; Satellites ; Signal resolution ; Signal to noise ratio ; solar-induced chlorophyll fluorescence (SIF)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-200d15af1fb9bcc8d0fccf20159ad3a7833c06122789ef2706f206edefdee2bf3</citedby><cites>FETCH-LOGICAL-c223t-200d15af1fb9bcc8d0fccf20159ad3a7833c06122789ef2706f206edefdee2bf3</cites><orcidid>0000-0002-5758-8576 ; 0000-0002-7689-3031 ; 0000-0002-7987-037X ; 0000-0001-6889-116X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Zou, Chu</creatorcontrib><creatorcontrib>Liu, Liangyun</creatorcontrib><creatorcontrib>Du, Shanshan</creatorcontrib><creatorcontrib>Liu, Xinjie</creatorcontrib><title>Investigating the Potential Accuracy of Spaceborne Solar-Induced Chlorophyll Fluorescence Retrieval for 12 Capable Satellites Based on Simulation Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Remote sensing of solar-induced chlorophyll fluorescence (SIF) has been widely investigated with satellites/sensors covering the spectral range of SIF emission with fine spectral resolutions (SRs). The potential precision of SIF retrievals is limited by instruments' spectral specifications. Here, the influence of spectral characteristics (SR, signal-to-noise ratio (SNR), and spectral coverage) on data-driven SIF retrieval was assessed using simulations, and the SIF retrieval capability of the obsolete, in-orbit, and planned satellites was evaluated from the spectral perspective. As a result, the 757-759- and 735-758-nm fitting windows (FWs) were found to be optimal for far-red SIF retrieval on satellites with fine (< 0.1 nm) and moderate (0.1-0.5 nm) SR. The 682-697-nm FW was found to perform better for red SIF retrievals. For far-red SIF retrievals, Orbiting Carbon Observatory 2 (OCO-2) and TanSat were found to have the best SIF retrieval performance, with a root-mean-square-error (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula>) of lower than 0. 25 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1, followed by satellites with moderate SRs (0.1-0.5 nm) such as CO2 monitoring (CO2M), TROPOspheric Monitoring Instrument (TROPOMI), and Global Ozone Monitoring Experiment 2 (GOME-2) (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} < 0.5 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1). The high SNR of SCanning Imaging Absorption Spectro Meter for Atmospheric CHartographY (SCIAMACHY) did not improve the far-red SIF retrieval greatly (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} =0.47 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1) but obtained a low RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula> at the red band (0.43 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1). The highest red SIF retrieval potential was found on TROPOMI, with an RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula> of 0.41 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1. Tropospheric Emissions Monitoring of Pollution (TEMPO) and FLuorescence Explorer (FLEX) gave poor performance (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} >0.9 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1) with their current spectral specifications. Improvement of the spectral characteristics is still needed to obtain precise SIF retrievals.]]></description><subject>Atmospheric modeling</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Data-driven algorithm</subject><subject>Emission analysis</subject><subject>Fluorescence</subject><subject>hyperspectral satellites</subject><subject>Instruments</subject><subject>Monitoring</subject><subject>Reflectivity</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Satellites</subject><subject>Signal resolution</subject><subject>Signal to noise ratio</subject><subject>solar-induced chlorophyll fluorescence (SIF)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN1qGzEQhUVpoW7aByi9EeR6Hc3I-6PLxE1cg6ElTq8XrXYUb1BWW0kb8IvkeSvjkKsZmHPOHD7GvoNYAgh19bC53y9RIC4lgoCm_MAWUJZNIarV6iNbCFBVgY3Cz-xLjE9CwKqEesFet-MLxTQ86jSMjzwdiP_xicY0aMevjZmDNkfuLd9P2lDnw0h8750OxXbsZ0M9Xx-cD346HJ3jd272gaKh0RC_pxQGesk51gcOyNd60p3Lfp3IuSFR5Dc65gg_8v3wPLvcIa8_ddJf2SerXaRvb_OC_b27fVj_Kna_N9v19a4wiDIVKEQPpbZgO9UZ0_TCGmNRQKl0L3XdSGlEBYh1o8hiLap8rKgn2xNhZ-UFuzznTsH_mzOI9snPYcwvW6xRKgEIkFVwVpngYwxk2ykMzzocWxDtCX97wt-e8Ldv-LPnx9kzENG7XikhK1TyP1pwg-4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zou, Chu</creator><creator>Liu, Liangyun</creator><creator>Du, Shanshan</creator><creator>Liu, Xinjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5758-8576</orcidid><orcidid>https://orcid.org/0000-0002-7689-3031</orcidid><orcidid>https://orcid.org/0000-0002-7987-037X</orcidid><orcidid>https://orcid.org/0000-0001-6889-116X</orcidid></search><sort><creationdate>2022</creationdate><title>Investigating the Potential Accuracy of Spaceborne Solar-Induced Chlorophyll Fluorescence Retrieval for 12 Capable Satellites Based on Simulation Data</title><author>Zou, Chu ; Liu, Liangyun ; Du, Shanshan ; Liu, Xinjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-200d15af1fb9bcc8d0fccf20159ad3a7833c06122789ef2706f206edefdee2bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric modeling</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Data-driven algorithm</topic><topic>Emission analysis</topic><topic>Fluorescence</topic><topic>hyperspectral satellites</topic><topic>Instruments</topic><topic>Monitoring</topic><topic>Reflectivity</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Satellites</topic><topic>Signal resolution</topic><topic>Signal to noise ratio</topic><topic>solar-induced chlorophyll fluorescence (SIF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Chu</creatorcontrib><creatorcontrib>Liu, Liangyun</creatorcontrib><creatorcontrib>Du, Shanshan</creatorcontrib><creatorcontrib>Liu, Xinjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Chu</au><au>Liu, Liangyun</au><au>Du, Shanshan</au><au>Liu, Xinjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the Potential Accuracy of Spaceborne Solar-Induced Chlorophyll Fluorescence Retrieval for 12 Capable Satellites Based on Simulation Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Remote sensing of solar-induced chlorophyll fluorescence (SIF) has been widely investigated with satellites/sensors covering the spectral range of SIF emission with fine spectral resolutions (SRs). The potential precision of SIF retrievals is limited by instruments' spectral specifications. Here, the influence of spectral characteristics (SR, signal-to-noise ratio (SNR), and spectral coverage) on data-driven SIF retrieval was assessed using simulations, and the SIF retrieval capability of the obsolete, in-orbit, and planned satellites was evaluated from the spectral perspective. As a result, the 757-759- and 735-758-nm fitting windows (FWs) were found to be optimal for far-red SIF retrieval on satellites with fine (< 0.1 nm) and moderate (0.1-0.5 nm) SR. The 682-697-nm FW was found to perform better for red SIF retrievals. For far-red SIF retrievals, Orbiting Carbon Observatory 2 (OCO-2) and TanSat were found to have the best SIF retrieval performance, with a root-mean-square-error (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula>) of lower than 0. 25 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1, followed by satellites with moderate SRs (0.1-0.5 nm) such as CO2 monitoring (CO2M), TROPOspheric Monitoring Instrument (TROPOMI), and Global Ozone Monitoring Experiment 2 (GOME-2) (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} < 0.5 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1). The high SNR of SCanning Imaging Absorption Spectro Meter for Atmospheric CHartographY (SCIAMACHY) did not improve the far-red SIF retrieval greatly (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} =0.47 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1) but obtained a low RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula> at the red band (0.43 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1). The highest red SIF retrieval potential was found on TROPOMI, with an RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} </tex-math></inline-formula> of 0.41 mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1. Tropospheric Emissions Monitoring of Pollution (TEMPO) and FLuorescence Explorer (FLEX) gave poor performance (RMSE<inline-formula> <tex-math notation="LaTeX">^{\ast} >0.9 </tex-math></inline-formula> mW <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{m}^{-2}\,\,\cdot </tex-math></inline-formula> sr<inline-formula> <tex-math notation="LaTeX">^{-1}\,\,\cdot </tex-math></inline-formula> nm-1) with their current spectral specifications. Improvement of the spectral characteristics is still needed to obtain precise SIF retrievals.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3210185</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5758-8576</orcidid><orcidid>https://orcid.org/0000-0002-7689-3031</orcidid><orcidid>https://orcid.org/0000-0002-7987-037X</orcidid><orcidid>https://orcid.org/0000-0001-6889-116X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9903629
source IEEE Electronic Library (IEL) Journals
subjects Atmospheric modeling
Chlorophyll
Chlorophylls
Data-driven algorithm
Emission analysis
Fluorescence
hyperspectral satellites
Instruments
Monitoring
Reflectivity
Remote sensing
Retrieval
Satellites
Signal resolution
Signal to noise ratio
solar-induced chlorophyll fluorescence (SIF)
title Investigating the Potential Accuracy of Spaceborne Solar-Induced Chlorophyll Fluorescence Retrieval for 12 Capable Satellites Based on Simulation Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20Potential%20Accuracy%20of%20Spaceborne%20Solar-Induced%20Chlorophyll%20Fluorescence%20Retrieval%20for%2012%20Capable%20Satellites%20Based%20on%20Simulation%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zou,%20Chu&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3210185&rft_dat=%3Cproquest_ieee_%3E2723901211%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-200d15af1fb9bcc8d0fccf20159ad3a7833c06122789ef2706f206edefdee2bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723901211&rft_id=info:pmid/&rft_ieee_id=9903629&rfr_iscdi=true