Loading…

Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network

In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lac...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Hongyu, Feng, Kangan, Kong, Yukai, Zhang, Lidong, Yu, Xianxiang, Yi, Wei
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 76
container_issue
container_start_page 71
container_title
container_volume
creator Chen, Hongyu
Feng, Kangan
Kong, Yukai
Zhang, Lidong
Yu, Xianxiang
Yi, Wei
description In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lack. Therefore, this paper proposes a convolutional neural network and gated recurrent units (CNN-GRU) to achieve MFR function recognition. The one-dimension convolutional neural network (1D-CNN) structure can be adapted to significantly reduce the computation time when processing a long input sequence, as well two 1D-CNNs are utilized to extract the higher-order sequential features of pulse repetition frequency (PRF) and pulse width (PW) in intercepted pulse stream sequence, respectively, while the GRU learns the higher-order sequential features to output the recognition results. The advantages of the proposed method in recognition accuracy and testing time are all verified by extensive experiments with ablation studies.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9904998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9904998</ieee_id><sourcerecordid>9904998</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9306d2b9663f8dcb0a85e8ac066dc72061e27ea0e12312084dbb8c77130b09d13</originalsourceid><addsrcrecordid>eNo9jN1KwzAYQKMgOOeewJu8QOBLsvxdSnFVmB0M5-3Iz1eJ1lbSFvHtFR1enQMHzhm5stIpDQKUOScLwZViyih5SVbj-AoAXFgtrFuQejP3ccpDT_cYh5c-__qupY9zN2XW_leffKHP2dOqaVi9P9AG5-K7H0yfQ3m7Jhet70Zcnbgkh83dU3XPtrv6obrdssyNmpiToJMITmvZ2hQDeKvQ-ghap2gEaI7CoAfkQnIBdp1CsNEYLiGAS1wuyc3fNyPi8aPkd1--js7B2jkrvwH6MEUk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Hongyu ; Feng, Kangan ; Kong, Yukai ; Zhang, Lidong ; Yu, Xianxiang ; Yi, Wei</creator><creatorcontrib>Chen, Hongyu ; Feng, Kangan ; Kong, Yukai ; Zhang, Lidong ; Yu, Xianxiang ; Yi, Wei</creatorcontrib><description>In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lack. Therefore, this paper proposes a convolutional neural network and gated recurrent units (CNN-GRU) to achieve MFR function recognition. The one-dimension convolutional neural network (1D-CNN) structure can be adapted to significantly reduce the computation time when processing a long input sequence, as well two 1D-CNNs are utilized to extract the higher-order sequential features of pulse repetition frequency (PRF) and pulse width (PW) in intercepted pulse stream sequence, respectively, while the GRU learns the higher-order sequential features to output the recognition results. The advantages of the proposed method in recognition accuracy and testing time are all verified by extensive experiments with ablation studies.</description><identifier>EISSN: 2155-5753</identifier><identifier>EISBN: 8395602057</identifier><identifier>EISBN: 9788395602054</identifier><language>eng</language><publisher>Warsaw University of Technology</publisher><subject>CNN-GRU ; Feature extraction ; function recognition ; intercepted pulse stream sequence ; Logic gates ; MFR ; Neural networks ; Radar equipment ; Reconnaissance ; Simulation ; Time-frequency analysis</subject><ispartof>2022 23rd International Radar Symposium (IRS), 2022, p.71-76</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9904998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9904998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Hongyu</creatorcontrib><creatorcontrib>Feng, Kangan</creatorcontrib><creatorcontrib>Kong, Yukai</creatorcontrib><creatorcontrib>Zhang, Lidong</creatorcontrib><creatorcontrib>Yu, Xianxiang</creatorcontrib><creatorcontrib>Yi, Wei</creatorcontrib><title>Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network</title><title>2022 23rd International Radar Symposium (IRS)</title><addtitle>IRS</addtitle><description>In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lack. Therefore, this paper proposes a convolutional neural network and gated recurrent units (CNN-GRU) to achieve MFR function recognition. The one-dimension convolutional neural network (1D-CNN) structure can be adapted to significantly reduce the computation time when processing a long input sequence, as well two 1D-CNNs are utilized to extract the higher-order sequential features of pulse repetition frequency (PRF) and pulse width (PW) in intercepted pulse stream sequence, respectively, while the GRU learns the higher-order sequential features to output the recognition results. The advantages of the proposed method in recognition accuracy and testing time are all verified by extensive experiments with ablation studies.</description><subject>CNN-GRU</subject><subject>Feature extraction</subject><subject>function recognition</subject><subject>intercepted pulse stream sequence</subject><subject>Logic gates</subject><subject>MFR</subject><subject>Neural networks</subject><subject>Radar equipment</subject><subject>Reconnaissance</subject><subject>Simulation</subject><subject>Time-frequency analysis</subject><issn>2155-5753</issn><isbn>8395602057</isbn><isbn>9788395602054</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jN1KwzAYQKMgOOeewJu8QOBLsvxdSnFVmB0M5-3Iz1eJ1lbSFvHtFR1enQMHzhm5stIpDQKUOScLwZViyih5SVbj-AoAXFgtrFuQejP3ccpDT_cYh5c-__qupY9zN2XW_leffKHP2dOqaVi9P9AG5-K7H0yfQ3m7Jhet70Zcnbgkh83dU3XPtrv6obrdssyNmpiToJMITmvZ2hQDeKvQ-ghap2gEaI7CoAfkQnIBdp1CsNEYLiGAS1wuyc3fNyPi8aPkd1--js7B2jkrvwH6MEUk</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Chen, Hongyu</creator><creator>Feng, Kangan</creator><creator>Kong, Yukai</creator><creator>Zhang, Lidong</creator><creator>Yu, Xianxiang</creator><creator>Yi, Wei</creator><general>Warsaw University of Technology</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220912</creationdate><title>Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network</title><author>Chen, Hongyu ; Feng, Kangan ; Kong, Yukai ; Zhang, Lidong ; Yu, Xianxiang ; Yi, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9306d2b9663f8dcb0a85e8ac066dc72061e27ea0e12312084dbb8c77130b09d13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CNN-GRU</topic><topic>Feature extraction</topic><topic>function recognition</topic><topic>intercepted pulse stream sequence</topic><topic>Logic gates</topic><topic>MFR</topic><topic>Neural networks</topic><topic>Radar equipment</topic><topic>Reconnaissance</topic><topic>Simulation</topic><topic>Time-frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hongyu</creatorcontrib><creatorcontrib>Feng, Kangan</creatorcontrib><creatorcontrib>Kong, Yukai</creatorcontrib><creatorcontrib>Zhang, Lidong</creatorcontrib><creatorcontrib>Yu, Xianxiang</creatorcontrib><creatorcontrib>Yi, Wei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hongyu</au><au>Feng, Kangan</au><au>Kong, Yukai</au><au>Zhang, Lidong</au><au>Yu, Xianxiang</au><au>Yi, Wei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network</atitle><btitle>2022 23rd International Radar Symposium (IRS)</btitle><stitle>IRS</stitle><date>2022-09-12</date><risdate>2022</risdate><spage>71</spage><epage>76</epage><pages>71-76</pages><eissn>2155-5753</eissn><eisbn>8395602057</eisbn><eisbn>9788395602054</eisbn><abstract>In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lack. Therefore, this paper proposes a convolutional neural network and gated recurrent units (CNN-GRU) to achieve MFR function recognition. The one-dimension convolutional neural network (1D-CNN) structure can be adapted to significantly reduce the computation time when processing a long input sequence, as well two 1D-CNNs are utilized to extract the higher-order sequential features of pulse repetition frequency (PRF) and pulse width (PW) in intercepted pulse stream sequence, respectively, while the GRU learns the higher-order sequential features to output the recognition results. The advantages of the proposed method in recognition accuracy and testing time are all verified by extensive experiments with ablation studies.</abstract><pub>Warsaw University of Technology</pub><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2155-5753
ispartof 2022 23rd International Radar Symposium (IRS), 2022, p.71-76
issn 2155-5753
language eng
recordid cdi_ieee_primary_9904998
source IEEE Xplore All Conference Series
subjects CNN-GRU
Feature extraction
function recognition
intercepted pulse stream sequence
Logic gates
MFR
Neural networks
Radar equipment
Reconnaissance
Simulation
Time-frequency analysis
title Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Function%20Recognition%20Of%20Multi-function%20Radar%20Via%20CNN-GRU%20Neural%20Network&rft.btitle=2022%2023rd%20International%20Radar%20Symposium%20(IRS)&rft.au=Chen,%20Hongyu&rft.date=2022-09-12&rft.spage=71&rft.epage=76&rft.pages=71-76&rft.eissn=2155-5753&rft_id=info:doi/&rft.eisbn=8395602057&rft.eisbn_list=9788395602054&rft_dat=%3Cieee_CHZPO%3E9904998%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9306d2b9663f8dcb0a85e8ac066dc72061e27ea0e12312084dbb8c77130b09d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9904998&rfr_iscdi=true