Loading…
Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network
In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lac...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 76 |
container_issue | |
container_start_page | 71 |
container_title | |
container_volume | |
creator | Chen, Hongyu Feng, Kangan Kong, Yukai Zhang, Lidong Yu, Xianxiang Yi, Wei |
description | In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lack. Therefore, this paper proposes a convolutional neural network and gated recurrent units (CNN-GRU) to achieve MFR function recognition. The one-dimension convolutional neural network (1D-CNN) structure can be adapted to significantly reduce the computation time when processing a long input sequence, as well two 1D-CNNs are utilized to extract the higher-order sequential features of pulse repetition frequency (PRF) and pulse width (PW) in intercepted pulse stream sequence, respectively, while the GRU learns the higher-order sequential features to output the recognition results. The advantages of the proposed method in recognition accuracy and testing time are all verified by extensive experiments with ablation studies. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9904998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9904998</ieee_id><sourcerecordid>9904998</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9306d2b9663f8dcb0a85e8ac066dc72061e27ea0e12312084dbb8c77130b09d13</originalsourceid><addsrcrecordid>eNo9jN1KwzAYQKMgOOeewJu8QOBLsvxdSnFVmB0M5-3Iz1eJ1lbSFvHtFR1enQMHzhm5stIpDQKUOScLwZViyih5SVbj-AoAXFgtrFuQejP3ccpDT_cYh5c-__qupY9zN2XW_leffKHP2dOqaVi9P9AG5-K7H0yfQ3m7Jhet70Zcnbgkh83dU3XPtrv6obrdssyNmpiToJMITmvZ2hQDeKvQ-ghap2gEaI7CoAfkQnIBdp1CsNEYLiGAS1wuyc3fNyPi8aPkd1--js7B2jkrvwH6MEUk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Hongyu ; Feng, Kangan ; Kong, Yukai ; Zhang, Lidong ; Yu, Xianxiang ; Yi, Wei</creator><creatorcontrib>Chen, Hongyu ; Feng, Kangan ; Kong, Yukai ; Zhang, Lidong ; Yu, Xianxiang ; Yi, Wei</creatorcontrib><description>In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lack. Therefore, this paper proposes a convolutional neural network and gated recurrent units (CNN-GRU) to achieve MFR function recognition. The one-dimension convolutional neural network (1D-CNN) structure can be adapted to significantly reduce the computation time when processing a long input sequence, as well two 1D-CNNs are utilized to extract the higher-order sequential features of pulse repetition frequency (PRF) and pulse width (PW) in intercepted pulse stream sequence, respectively, while the GRU learns the higher-order sequential features to output the recognition results. The advantages of the proposed method in recognition accuracy and testing time are all verified by extensive experiments with ablation studies.</description><identifier>EISSN: 2155-5753</identifier><identifier>EISBN: 8395602057</identifier><identifier>EISBN: 9788395602054</identifier><language>eng</language><publisher>Warsaw University of Technology</publisher><subject>CNN-GRU ; Feature extraction ; function recognition ; intercepted pulse stream sequence ; Logic gates ; MFR ; Neural networks ; Radar equipment ; Reconnaissance ; Simulation ; Time-frequency analysis</subject><ispartof>2022 23rd International Radar Symposium (IRS), 2022, p.71-76</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9904998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9904998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Hongyu</creatorcontrib><creatorcontrib>Feng, Kangan</creatorcontrib><creatorcontrib>Kong, Yukai</creatorcontrib><creatorcontrib>Zhang, Lidong</creatorcontrib><creatorcontrib>Yu, Xianxiang</creatorcontrib><creatorcontrib>Yi, Wei</creatorcontrib><title>Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network</title><title>2022 23rd International Radar Symposium (IRS)</title><addtitle>IRS</addtitle><description>In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lack. Therefore, this paper proposes a convolutional neural network and gated recurrent units (CNN-GRU) to achieve MFR function recognition. The one-dimension convolutional neural network (1D-CNN) structure can be adapted to significantly reduce the computation time when processing a long input sequence, as well two 1D-CNNs are utilized to extract the higher-order sequential features of pulse repetition frequency (PRF) and pulse width (PW) in intercepted pulse stream sequence, respectively, while the GRU learns the higher-order sequential features to output the recognition results. The advantages of the proposed method in recognition accuracy and testing time are all verified by extensive experiments with ablation studies.</description><subject>CNN-GRU</subject><subject>Feature extraction</subject><subject>function recognition</subject><subject>intercepted pulse stream sequence</subject><subject>Logic gates</subject><subject>MFR</subject><subject>Neural networks</subject><subject>Radar equipment</subject><subject>Reconnaissance</subject><subject>Simulation</subject><subject>Time-frequency analysis</subject><issn>2155-5753</issn><isbn>8395602057</isbn><isbn>9788395602054</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jN1KwzAYQKMgOOeewJu8QOBLsvxdSnFVmB0M5-3Iz1eJ1lbSFvHtFR1enQMHzhm5stIpDQKUOScLwZViyih5SVbj-AoAXFgtrFuQejP3ccpDT_cYh5c-__qupY9zN2XW_leffKHP2dOqaVi9P9AG5-K7H0yfQ3m7Jhet70Zcnbgkh83dU3XPtrv6obrdssyNmpiToJMITmvZ2hQDeKvQ-ghap2gEaI7CoAfkQnIBdp1CsNEYLiGAS1wuyc3fNyPi8aPkd1--js7B2jkrvwH6MEUk</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Chen, Hongyu</creator><creator>Feng, Kangan</creator><creator>Kong, Yukai</creator><creator>Zhang, Lidong</creator><creator>Yu, Xianxiang</creator><creator>Yi, Wei</creator><general>Warsaw University of Technology</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220912</creationdate><title>Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network</title><author>Chen, Hongyu ; Feng, Kangan ; Kong, Yukai ; Zhang, Lidong ; Yu, Xianxiang ; Yi, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9306d2b9663f8dcb0a85e8ac066dc72061e27ea0e12312084dbb8c77130b09d13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CNN-GRU</topic><topic>Feature extraction</topic><topic>function recognition</topic><topic>intercepted pulse stream sequence</topic><topic>Logic gates</topic><topic>MFR</topic><topic>Neural networks</topic><topic>Radar equipment</topic><topic>Reconnaissance</topic><topic>Simulation</topic><topic>Time-frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hongyu</creatorcontrib><creatorcontrib>Feng, Kangan</creatorcontrib><creatorcontrib>Kong, Yukai</creatorcontrib><creatorcontrib>Zhang, Lidong</creatorcontrib><creatorcontrib>Yu, Xianxiang</creatorcontrib><creatorcontrib>Yi, Wei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hongyu</au><au>Feng, Kangan</au><au>Kong, Yukai</au><au>Zhang, Lidong</au><au>Yu, Xianxiang</au><au>Yi, Wei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network</atitle><btitle>2022 23rd International Radar Symposium (IRS)</btitle><stitle>IRS</stitle><date>2022-09-12</date><risdate>2022</risdate><spage>71</spage><epage>76</epage><pages>71-76</pages><eissn>2155-5753</eissn><eisbn>8395602057</eisbn><eisbn>9788395602054</eisbn><abstract>In the field of cognitive electronic reconnaissance, recognizing the function (A variety of work modes arranged in temporal sequence) of the multi-function radar (MFR) is critical for electronic warfare equipment to develop effective countermeasures. However, research in this field is still very lack. Therefore, this paper proposes a convolutional neural network and gated recurrent units (CNN-GRU) to achieve MFR function recognition. The one-dimension convolutional neural network (1D-CNN) structure can be adapted to significantly reduce the computation time when processing a long input sequence, as well two 1D-CNNs are utilized to extract the higher-order sequential features of pulse repetition frequency (PRF) and pulse width (PW) in intercepted pulse stream sequence, respectively, while the GRU learns the higher-order sequential features to output the recognition results. The advantages of the proposed method in recognition accuracy and testing time are all verified by extensive experiments with ablation studies.</abstract><pub>Warsaw University of Technology</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2155-5753 |
ispartof | 2022 23rd International Radar Symposium (IRS), 2022, p.71-76 |
issn | 2155-5753 |
language | eng |
recordid | cdi_ieee_primary_9904998 |
source | IEEE Xplore All Conference Series |
subjects | CNN-GRU Feature extraction function recognition intercepted pulse stream sequence Logic gates MFR Neural networks Radar equipment Reconnaissance Simulation Time-frequency analysis |
title | Function Recognition Of Multi-function Radar Via CNN-GRU Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Function%20Recognition%20Of%20Multi-function%20Radar%20Via%20CNN-GRU%20Neural%20Network&rft.btitle=2022%2023rd%20International%20Radar%20Symposium%20(IRS)&rft.au=Chen,%20Hongyu&rft.date=2022-09-12&rft.spage=71&rft.epage=76&rft.pages=71-76&rft.eissn=2155-5753&rft_id=info:doi/&rft.eisbn=8395602057&rft.eisbn_list=9788395602054&rft_dat=%3Cieee_CHZPO%3E9904998%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9306d2b9663f8dcb0a85e8ac066dc72061e27ea0e12312084dbb8c77130b09d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9904998&rfr_iscdi=true |