Loading…
Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique
Most IoT malware is variants generated by editing and reusing parts of the functions based on publicly available source codes. In our previous study, we proposed a method to estimate the functions of a specimen using the Function Call Sequence Graph (FCSG), which is a directed graph of execution seq...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Oshio, Kei Takada, Satoshi Han, Chansu Tanaka, Akira Takeuchi, Jun'ichi |
description | Most IoT malware is variants generated by editing and reusing parts of the functions based on publicly available source codes. In our previous study, we proposed a method to estimate the functions of a specimen using the Function Call Sequence Graph (FCSG), which is a directed graph of execution sequence of function calls. In the FCSG-based method, the subgraph corresponding to a malware functionality is manually created and called a signature-FSCG. The specimens with the signature-FSCG are expected to have the corresponding functionality. However, this method cannot detect the specimens with a slightly different subgraph from the signature-FSCG. This paper found that these specimens were supposed to have the same functionality for a signature-FSCG. These specimens need more flexible signature matching, and we propose a graph embedding technique to realize it. |
doi_str_mv | 10.1109/ISCC55528.2022.9912475 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9912475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9912475</ieee_id><sourcerecordid>9912475</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-478b6572e648f701b2f9a8e2779dc382fa2ddeab4ebe8119608fb62f4bd2538e3</originalsourceid><addsrcrecordid>eNotkNtKw0AURUdBsNZ-gSDzA6kzZ-6-SWhroKLQ9rnMJGfsSJrUJEX9e2992nu9bBabkFvOppwzd1es8lwpBXYKDGDqHAdp1BmZOGO51ko640CckxFoCZkR1l2Sq75_Y4xZBWZEVi9tP2B3T-c1fqZQI50fm3JIbUNn_ZD2_q-2kRbtmj75-sN3SDd9al7povOHHZ3tA1bVL6-x3DXp_YjX5CL6usfJKcdkM5-t88ds-bwo8odlloCJIZPGBq0MoJY2GsYDROctgjGuKoWF6KGq0AeJAS3nTjMbg4YoQwVKWBRjcvO_mxBxe-h-bLuv7ekD8Q1gOlE7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique</title><source>IEEE Xplore All Conference Series</source><creator>Oshio, Kei ; Takada, Satoshi ; Han, Chansu ; Tanaka, Akira ; Takeuchi, Jun'ichi</creator><creatorcontrib>Oshio, Kei ; Takada, Satoshi ; Han, Chansu ; Tanaka, Akira ; Takeuchi, Jun'ichi</creatorcontrib><description>Most IoT malware is variants generated by editing and reusing parts of the functions based on publicly available source codes. In our previous study, we proposed a method to estimate the functions of a specimen using the Function Call Sequence Graph (FCSG), which is a directed graph of execution sequence of function calls. In the FCSG-based method, the subgraph corresponding to a malware functionality is manually created and called a signature-FSCG. The specimens with the signature-FSCG are expected to have the corresponding functionality. However, this method cannot detect the specimens with a slightly different subgraph from the signature-FSCG. This paper found that these specimens were supposed to have the same functionality for a signature-FSCG. These specimens need more flexible signature matching, and we propose a graph embedding technique to realize it.</description><identifier>EISSN: 2642-7389</identifier><identifier>EISBN: 9781665497923</identifier><identifier>EISBN: 1665497920</identifier><identifier>DOI: 10.1109/ISCC55528.2022.9912475</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; Directed graphs ; Estimation ; graph embedding ; IoT malware ; Malware ; malware analysis ; signature matching ; Source coding ; Static analysis</subject><ispartof>2022 IEEE Symposium on Computers and Communications (ISCC), 2022, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9912475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9912475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oshio, Kei</creatorcontrib><creatorcontrib>Takada, Satoshi</creatorcontrib><creatorcontrib>Han, Chansu</creatorcontrib><creatorcontrib>Tanaka, Akira</creatorcontrib><creatorcontrib>Takeuchi, Jun'ichi</creatorcontrib><title>Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique</title><title>2022 IEEE Symposium on Computers and Communications (ISCC)</title><addtitle>ISCC</addtitle><description>Most IoT malware is variants generated by editing and reusing parts of the functions based on publicly available source codes. In our previous study, we proposed a method to estimate the functions of a specimen using the Function Call Sequence Graph (FCSG), which is a directed graph of execution sequence of function calls. In the FCSG-based method, the subgraph corresponding to a malware functionality is manually created and called a signature-FSCG. The specimens with the signature-FSCG are expected to have the corresponding functionality. However, this method cannot detect the specimens with a slightly different subgraph from the signature-FSCG. This paper found that these specimens were supposed to have the same functionality for a signature-FSCG. These specimens need more flexible signature matching, and we propose a graph embedding technique to realize it.</description><subject>Computers</subject><subject>Directed graphs</subject><subject>Estimation</subject><subject>graph embedding</subject><subject>IoT malware</subject><subject>Malware</subject><subject>malware analysis</subject><subject>signature matching</subject><subject>Source coding</subject><subject>Static analysis</subject><issn>2642-7389</issn><isbn>9781665497923</isbn><isbn>1665497920</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AURUdBsNZ-gSDzA6kzZ-6-SWhroKLQ9rnMJGfsSJrUJEX9e2992nu9bBabkFvOppwzd1es8lwpBXYKDGDqHAdp1BmZOGO51ko640CckxFoCZkR1l2Sq75_Y4xZBWZEVi9tP2B3T-c1fqZQI50fm3JIbUNn_ZD2_q-2kRbtmj75-sN3SDd9al7povOHHZ3tA1bVL6-x3DXp_YjX5CL6usfJKcdkM5-t88ds-bwo8odlloCJIZPGBq0MoJY2GsYDROctgjGuKoWF6KGq0AeJAS3nTjMbg4YoQwVKWBRjcvO_mxBxe-h-bLuv7ekD8Q1gOlE7</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Oshio, Kei</creator><creator>Takada, Satoshi</creator><creator>Han, Chansu</creator><creator>Tanaka, Akira</creator><creator>Takeuchi, Jun'ichi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220630</creationdate><title>Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique</title><author>Oshio, Kei ; Takada, Satoshi ; Han, Chansu ; Tanaka, Akira ; Takeuchi, Jun'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-478b6572e648f701b2f9a8e2779dc382fa2ddeab4ebe8119608fb62f4bd2538e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computers</topic><topic>Directed graphs</topic><topic>Estimation</topic><topic>graph embedding</topic><topic>IoT malware</topic><topic>Malware</topic><topic>malware analysis</topic><topic>signature matching</topic><topic>Source coding</topic><topic>Static analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Oshio, Kei</creatorcontrib><creatorcontrib>Takada, Satoshi</creatorcontrib><creatorcontrib>Han, Chansu</creatorcontrib><creatorcontrib>Tanaka, Akira</creatorcontrib><creatorcontrib>Takeuchi, Jun'ichi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oshio, Kei</au><au>Takada, Satoshi</au><au>Han, Chansu</au><au>Tanaka, Akira</au><au>Takeuchi, Jun'ichi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique</atitle><btitle>2022 IEEE Symposium on Computers and Communications (ISCC)</btitle><stitle>ISCC</stitle><date>2022-06-30</date><risdate>2022</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2642-7389</eissn><eisbn>9781665497923</eisbn><eisbn>1665497920</eisbn><abstract>Most IoT malware is variants generated by editing and reusing parts of the functions based on publicly available source codes. In our previous study, we proposed a method to estimate the functions of a specimen using the Function Call Sequence Graph (FCSG), which is a directed graph of execution sequence of function calls. In the FCSG-based method, the subgraph corresponding to a malware functionality is manually created and called a signature-FSCG. The specimens with the signature-FSCG are expected to have the corresponding functionality. However, this method cannot detect the specimens with a slightly different subgraph from the signature-FSCG. This paper found that these specimens were supposed to have the same functionality for a signature-FSCG. These specimens need more flexible signature matching, and we propose a graph embedding technique to realize it.</abstract><pub>IEEE</pub><doi>10.1109/ISCC55528.2022.9912475</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-7389 |
ispartof | 2022 IEEE Symposium on Computers and Communications (ISCC), 2022, p.1-3 |
issn | 2642-7389 |
language | eng |
recordid | cdi_ieee_primary_9912475 |
source | IEEE Xplore All Conference Series |
subjects | Computers Directed graphs Estimation graph embedding IoT malware Malware malware analysis signature matching Source coding Static analysis |
title | Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Poster:%20Flexible%20Function%20Estimation%20of%20IoT%20Malware%20Using%20Graph%20Embedding%20Technique&rft.btitle=2022%20IEEE%20Symposium%20on%20Computers%20and%20Communications%20(ISCC)&rft.au=Oshio,%20Kei&rft.date=2022-06-30&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2642-7389&rft_id=info:doi/10.1109/ISCC55528.2022.9912475&rft.eisbn=9781665497923&rft.eisbn_list=1665497920&rft_dat=%3Cieee_CHZPO%3E9912475%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-478b6572e648f701b2f9a8e2779dc382fa2ddeab4ebe8119608fb62f4bd2538e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9912475&rfr_iscdi=true |