Loading…
Parallel Systems for the Bridge Inspection
As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge in...
Saved in:
Published in: | IEEE journal of radio frequency identification (Online) 2022, Vol.6, p.783-786 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993 |
container_end_page | 786 |
container_issue | |
container_start_page | 783 |
container_title | IEEE journal of radio frequency identification (Online) |
container_volume | 6 |
creator | Ma, Hongyao Wang, Zhixue Gao, Hang Shen, Zhen Zhang, Hong Hu, Xueliang Li, Chuanfu Xiong, Gang |
description | As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge inspection have developed rapidly and are gradually replacing traditional methods. Here we propose the parallel systems for bridge inspection, which introduces the parallel theory into the field of bridge inspection to solve the problems of data shortage and the special scene prediction. Based on the classification of concrete dataset (CCD) and the parallel classification dataset (PCD), ConvNeXt and other neural networks are trained and compared. The crack detection accuracy reached 99.22%. We believe that the framework proposed in this paper can improve the efficiency and accuracy of bridge inspection significantly. |
doi_str_mv | 10.1109/JRFID.2022.3212598 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9913205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913205</ieee_id><sourcerecordid>2754152509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsGj_gF4C3oTUmUl3N3vUarVSUPwAb8tmM9GUtKm76aH_3taWnmYO7_O-8AhxgTBABHPz_Dae3A8IiAYZIUmTH4keDZVJNZmv48Of46noxzgDADISMyl74vrVBdc03CTv69jxPCZVG5Luh5O7UJffnEwWccm-q9vFuTipXBO5v79n4nP88DF6Sqcvj5PR7TT1m50u9aVUUrMCJ8nrAtlpxMy40mdekVY5oR4aVXjQUEAF6AyovERVECs0JjsTV7veZWh_Vxw7O2tXYbGZtKTlECVJ2KZol_KhjTFwZZehnruwtgh2q8X-a7FbLXavZQNd7qCamQ-AMZgRyOwPpjJbng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754152509</pqid></control><display><type>article</type><title>Parallel Systems for the Bridge Inspection</title><source>IEEE Xplore (Online service)</source><creator>Ma, Hongyao ; Wang, Zhixue ; Gao, Hang ; Shen, Zhen ; Zhang, Hong ; Hu, Xueliang ; Li, Chuanfu ; Xiong, Gang</creator><creatorcontrib>Ma, Hongyao ; Wang, Zhixue ; Gao, Hang ; Shen, Zhen ; Zhang, Hong ; Hu, Xueliang ; Li, Chuanfu ; Xiong, Gang</creatorcontrib><description>As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge inspection have developed rapidly and are gradually replacing traditional methods. Here we propose the parallel systems for bridge inspection, which introduces the parallel theory into the field of bridge inspection to solve the problems of data shortage and the special scene prediction. Based on the classification of concrete dataset (CCD) and the parallel classification dataset (PCD), ConvNeXt and other neural networks are trained and compared. The crack detection accuracy reached 99.22%. We believe that the framework proposed in this paper can improve the efficiency and accuracy of bridge inspection significantly.</description><identifier>ISSN: 2469-7281</identifier><identifier>EISSN: 2469-729X</identifier><identifier>DOI: 10.1109/JRFID.2022.3212598</identifier><identifier>CODEN: IJRFAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Bridge inspection ; Bridges ; Classification ; Computational modeling ; Computer vision ; Datasets ; Inspection ; Intelligent systems ; intelligent technologies ; Load modeling ; Neural networks ; Parallel systems ; Point cloud compression ; Public transportation ; Simultaneous localization and mapping ; Transportation safety ; Unmanned aerial vehicles</subject><ispartof>IEEE journal of radio frequency identification (Online), 2022, Vol.6, p.783-786</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993</cites><orcidid>0000-0002-4303-5559 ; 0000-0002-9634-4945 ; 0000-0002-7705-8281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ma, Hongyao</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Hu, Xueliang</creatorcontrib><creatorcontrib>Li, Chuanfu</creatorcontrib><creatorcontrib>Xiong, Gang</creatorcontrib><title>Parallel Systems for the Bridge Inspection</title><title>IEEE journal of radio frequency identification (Online)</title><addtitle>JRFID</addtitle><description>As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge inspection have developed rapidly and are gradually replacing traditional methods. Here we propose the parallel systems for bridge inspection, which introduces the parallel theory into the field of bridge inspection to solve the problems of data shortage and the special scene prediction. Based on the classification of concrete dataset (CCD) and the parallel classification dataset (PCD), ConvNeXt and other neural networks are trained and compared. The crack detection accuracy reached 99.22%. We believe that the framework proposed in this paper can improve the efficiency and accuracy of bridge inspection significantly.</description><subject>Artificial intelligence</subject><subject>Bridge inspection</subject><subject>Bridges</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Inspection</subject><subject>Intelligent systems</subject><subject>intelligent technologies</subject><subject>Load modeling</subject><subject>Neural networks</subject><subject>Parallel systems</subject><subject>Point cloud compression</subject><subject>Public transportation</subject><subject>Simultaneous localization and mapping</subject><subject>Transportation safety</subject><subject>Unmanned aerial vehicles</subject><issn>2469-7281</issn><issn>2469-729X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsGj_gF4C3oTUmUl3N3vUarVSUPwAb8tmM9GUtKm76aH_3taWnmYO7_O-8AhxgTBABHPz_Dae3A8IiAYZIUmTH4keDZVJNZmv48Of46noxzgDADISMyl74vrVBdc03CTv69jxPCZVG5Luh5O7UJffnEwWccm-q9vFuTipXBO5v79n4nP88DF6Sqcvj5PR7TT1m50u9aVUUrMCJ8nrAtlpxMy40mdekVY5oR4aVXjQUEAF6AyovERVECs0JjsTV7veZWh_Vxw7O2tXYbGZtKTlECVJ2KZol_KhjTFwZZehnruwtgh2q8X-a7FbLXavZQNd7qCamQ-AMZgRyOwPpjJbng</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ma, Hongyao</creator><creator>Wang, Zhixue</creator><creator>Gao, Hang</creator><creator>Shen, Zhen</creator><creator>Zhang, Hong</creator><creator>Hu, Xueliang</creator><creator>Li, Chuanfu</creator><creator>Xiong, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4303-5559</orcidid><orcidid>https://orcid.org/0000-0002-9634-4945</orcidid><orcidid>https://orcid.org/0000-0002-7705-8281</orcidid></search><sort><creationdate>2022</creationdate><title>Parallel Systems for the Bridge Inspection</title><author>Ma, Hongyao ; Wang, Zhixue ; Gao, Hang ; Shen, Zhen ; Zhang, Hong ; Hu, Xueliang ; Li, Chuanfu ; Xiong, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Bridge inspection</topic><topic>Bridges</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Inspection</topic><topic>Intelligent systems</topic><topic>intelligent technologies</topic><topic>Load modeling</topic><topic>Neural networks</topic><topic>Parallel systems</topic><topic>Point cloud compression</topic><topic>Public transportation</topic><topic>Simultaneous localization and mapping</topic><topic>Transportation safety</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Hongyao</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Hu, Xueliang</creatorcontrib><creatorcontrib>Li, Chuanfu</creatorcontrib><creatorcontrib>Xiong, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of radio frequency identification (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Hongyao</au><au>Wang, Zhixue</au><au>Gao, Hang</au><au>Shen, Zhen</au><au>Zhang, Hong</au><au>Hu, Xueliang</au><au>Li, Chuanfu</au><au>Xiong, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Systems for the Bridge Inspection</atitle><jtitle>IEEE journal of radio frequency identification (Online)</jtitle><stitle>JRFID</stitle><date>2022</date><risdate>2022</risdate><volume>6</volume><spage>783</spage><epage>786</epage><pages>783-786</pages><issn>2469-7281</issn><eissn>2469-729X</eissn><coden>IJRFAF</coden><abstract>As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge inspection have developed rapidly and are gradually replacing traditional methods. Here we propose the parallel systems for bridge inspection, which introduces the parallel theory into the field of bridge inspection to solve the problems of data shortage and the special scene prediction. Based on the classification of concrete dataset (CCD) and the parallel classification dataset (PCD), ConvNeXt and other neural networks are trained and compared. The crack detection accuracy reached 99.22%. We believe that the framework proposed in this paper can improve the efficiency and accuracy of bridge inspection significantly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JRFID.2022.3212598</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4303-5559</orcidid><orcidid>https://orcid.org/0000-0002-9634-4945</orcidid><orcidid>https://orcid.org/0000-0002-7705-8281</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-7281 |
ispartof | IEEE journal of radio frequency identification (Online), 2022, Vol.6, p.783-786 |
issn | 2469-7281 2469-729X |
language | eng |
recordid | cdi_ieee_primary_9913205 |
source | IEEE Xplore (Online service) |
subjects | Artificial intelligence Bridge inspection Bridges Classification Computational modeling Computer vision Datasets Inspection Intelligent systems intelligent technologies Load modeling Neural networks Parallel systems Point cloud compression Public transportation Simultaneous localization and mapping Transportation safety Unmanned aerial vehicles |
title | Parallel Systems for the Bridge Inspection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Systems%20for%20the%20Bridge%20Inspection&rft.jtitle=IEEE%20journal%20of%20radio%20frequency%20identification%20(Online)&rft.au=Ma,%20Hongyao&rft.date=2022&rft.volume=6&rft.spage=783&rft.epage=786&rft.pages=783-786&rft.issn=2469-7281&rft.eissn=2469-729X&rft.coden=IJRFAF&rft_id=info:doi/10.1109/JRFID.2022.3212598&rft_dat=%3Cproquest_ieee_%3E2754152509%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2754152509&rft_id=info:pmid/&rft_ieee_id=9913205&rfr_iscdi=true |