Loading…

Parallel Systems for the Bridge Inspection

As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of radio frequency identification (Online) 2022, Vol.6, p.783-786
Main Authors: Ma, Hongyao, Wang, Zhixue, Gao, Hang, Shen, Zhen, Zhang, Hong, Hu, Xueliang, Li, Chuanfu, Xiong, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993
container_end_page 786
container_issue
container_start_page 783
container_title IEEE journal of radio frequency identification (Online)
container_volume 6
creator Ma, Hongyao
Wang, Zhixue
Gao, Hang
Shen, Zhen
Zhang, Hong
Hu, Xueliang
Li, Chuanfu
Xiong, Gang
description As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge inspection have developed rapidly and are gradually replacing traditional methods. Here we propose the parallel systems for bridge inspection, which introduces the parallel theory into the field of bridge inspection to solve the problems of data shortage and the special scene prediction. Based on the classification of concrete dataset (CCD) and the parallel classification dataset (PCD), ConvNeXt and other neural networks are trained and compared. The crack detection accuracy reached 99.22%. We believe that the framework proposed in this paper can improve the efficiency and accuracy of bridge inspection significantly.
doi_str_mv 10.1109/JRFID.2022.3212598
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9913205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913205</ieee_id><sourcerecordid>2754152509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsGj_gF4C3oTUmUl3N3vUarVSUPwAb8tmM9GUtKm76aH_3taWnmYO7_O-8AhxgTBABHPz_Dae3A8IiAYZIUmTH4keDZVJNZmv48Of46noxzgDADISMyl74vrVBdc03CTv69jxPCZVG5Luh5O7UJffnEwWccm-q9vFuTipXBO5v79n4nP88DF6Sqcvj5PR7TT1m50u9aVUUrMCJ8nrAtlpxMy40mdekVY5oR4aVXjQUEAF6AyovERVECs0JjsTV7veZWh_Vxw7O2tXYbGZtKTlECVJ2KZol_KhjTFwZZehnruwtgh2q8X-a7FbLXavZQNd7qCamQ-AMZgRyOwPpjJbng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754152509</pqid></control><display><type>article</type><title>Parallel Systems for the Bridge Inspection</title><source>IEEE Xplore (Online service)</source><creator>Ma, Hongyao ; Wang, Zhixue ; Gao, Hang ; Shen, Zhen ; Zhang, Hong ; Hu, Xueliang ; Li, Chuanfu ; Xiong, Gang</creator><creatorcontrib>Ma, Hongyao ; Wang, Zhixue ; Gao, Hang ; Shen, Zhen ; Zhang, Hong ; Hu, Xueliang ; Li, Chuanfu ; Xiong, Gang</creatorcontrib><description>As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge inspection have developed rapidly and are gradually replacing traditional methods. Here we propose the parallel systems for bridge inspection, which introduces the parallel theory into the field of bridge inspection to solve the problems of data shortage and the special scene prediction. Based on the classification of concrete dataset (CCD) and the parallel classification dataset (PCD), ConvNeXt and other neural networks are trained and compared. The crack detection accuracy reached 99.22%. We believe that the framework proposed in this paper can improve the efficiency and accuracy of bridge inspection significantly.</description><identifier>ISSN: 2469-7281</identifier><identifier>EISSN: 2469-729X</identifier><identifier>DOI: 10.1109/JRFID.2022.3212598</identifier><identifier>CODEN: IJRFAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Bridge inspection ; Bridges ; Classification ; Computational modeling ; Computer vision ; Datasets ; Inspection ; Intelligent systems ; intelligent technologies ; Load modeling ; Neural networks ; Parallel systems ; Point cloud compression ; Public transportation ; Simultaneous localization and mapping ; Transportation safety ; Unmanned aerial vehicles</subject><ispartof>IEEE journal of radio frequency identification (Online), 2022, Vol.6, p.783-786</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993</cites><orcidid>0000-0002-4303-5559 ; 0000-0002-9634-4945 ; 0000-0002-7705-8281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ma, Hongyao</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Hu, Xueliang</creatorcontrib><creatorcontrib>Li, Chuanfu</creatorcontrib><creatorcontrib>Xiong, Gang</creatorcontrib><title>Parallel Systems for the Bridge Inspection</title><title>IEEE journal of radio frequency identification (Online)</title><addtitle>JRFID</addtitle><description>As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge inspection have developed rapidly and are gradually replacing traditional methods. Here we propose the parallel systems for bridge inspection, which introduces the parallel theory into the field of bridge inspection to solve the problems of data shortage and the special scene prediction. Based on the classification of concrete dataset (CCD) and the parallel classification dataset (PCD), ConvNeXt and other neural networks are trained and compared. The crack detection accuracy reached 99.22%. We believe that the framework proposed in this paper can improve the efficiency and accuracy of bridge inspection significantly.</description><subject>Artificial intelligence</subject><subject>Bridge inspection</subject><subject>Bridges</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Inspection</subject><subject>Intelligent systems</subject><subject>intelligent technologies</subject><subject>Load modeling</subject><subject>Neural networks</subject><subject>Parallel systems</subject><subject>Point cloud compression</subject><subject>Public transportation</subject><subject>Simultaneous localization and mapping</subject><subject>Transportation safety</subject><subject>Unmanned aerial vehicles</subject><issn>2469-7281</issn><issn>2469-729X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsGj_gF4C3oTUmUl3N3vUarVSUPwAb8tmM9GUtKm76aH_3taWnmYO7_O-8AhxgTBABHPz_Dae3A8IiAYZIUmTH4keDZVJNZmv48Of46noxzgDADISMyl74vrVBdc03CTv69jxPCZVG5Luh5O7UJffnEwWccm-q9vFuTipXBO5v79n4nP88DF6Sqcvj5PR7TT1m50u9aVUUrMCJ8nrAtlpxMy40mdekVY5oR4aVXjQUEAF6AyovERVECs0JjsTV7veZWh_Vxw7O2tXYbGZtKTlECVJ2KZol_KhjTFwZZehnruwtgh2q8X-a7FbLXavZQNd7qCamQ-AMZgRyOwPpjJbng</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ma, Hongyao</creator><creator>Wang, Zhixue</creator><creator>Gao, Hang</creator><creator>Shen, Zhen</creator><creator>Zhang, Hong</creator><creator>Hu, Xueliang</creator><creator>Li, Chuanfu</creator><creator>Xiong, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4303-5559</orcidid><orcidid>https://orcid.org/0000-0002-9634-4945</orcidid><orcidid>https://orcid.org/0000-0002-7705-8281</orcidid></search><sort><creationdate>2022</creationdate><title>Parallel Systems for the Bridge Inspection</title><author>Ma, Hongyao ; Wang, Zhixue ; Gao, Hang ; Shen, Zhen ; Zhang, Hong ; Hu, Xueliang ; Li, Chuanfu ; Xiong, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Bridge inspection</topic><topic>Bridges</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Inspection</topic><topic>Intelligent systems</topic><topic>intelligent technologies</topic><topic>Load modeling</topic><topic>Neural networks</topic><topic>Parallel systems</topic><topic>Point cloud compression</topic><topic>Public transportation</topic><topic>Simultaneous localization and mapping</topic><topic>Transportation safety</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Hongyao</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Hu, Xueliang</creatorcontrib><creatorcontrib>Li, Chuanfu</creatorcontrib><creatorcontrib>Xiong, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of radio frequency identification (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Hongyao</au><au>Wang, Zhixue</au><au>Gao, Hang</au><au>Shen, Zhen</au><au>Zhang, Hong</au><au>Hu, Xueliang</au><au>Li, Chuanfu</au><au>Xiong, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Systems for the Bridge Inspection</atitle><jtitle>IEEE journal of radio frequency identification (Online)</jtitle><stitle>JRFID</stitle><date>2022</date><risdate>2022</risdate><volume>6</volume><spage>783</spage><epage>786</epage><pages>783-786</pages><issn>2469-7281</issn><eissn>2469-729X</eissn><coden>IJRFAF</coden><abstract>As the number of bridges grows in China, bridge inspection is necessary to ensure public transport safety. With the development of various technologies in recent years, such as unmanned aerial vehicles, computer vision, advanced sensing, artificial intelligence, intelligent technologies in bridge inspection have developed rapidly and are gradually replacing traditional methods. Here we propose the parallel systems for bridge inspection, which introduces the parallel theory into the field of bridge inspection to solve the problems of data shortage and the special scene prediction. Based on the classification of concrete dataset (CCD) and the parallel classification dataset (PCD), ConvNeXt and other neural networks are trained and compared. The crack detection accuracy reached 99.22%. We believe that the framework proposed in this paper can improve the efficiency and accuracy of bridge inspection significantly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JRFID.2022.3212598</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4303-5559</orcidid><orcidid>https://orcid.org/0000-0002-9634-4945</orcidid><orcidid>https://orcid.org/0000-0002-7705-8281</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-7281
ispartof IEEE journal of radio frequency identification (Online), 2022, Vol.6, p.783-786
issn 2469-7281
2469-729X
language eng
recordid cdi_ieee_primary_9913205
source IEEE Xplore (Online service)
subjects Artificial intelligence
Bridge inspection
Bridges
Classification
Computational modeling
Computer vision
Datasets
Inspection
Intelligent systems
intelligent technologies
Load modeling
Neural networks
Parallel systems
Point cloud compression
Public transportation
Simultaneous localization and mapping
Transportation safety
Unmanned aerial vehicles
title Parallel Systems for the Bridge Inspection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Systems%20for%20the%20Bridge%20Inspection&rft.jtitle=IEEE%20journal%20of%20radio%20frequency%20identification%20(Online)&rft.au=Ma,%20Hongyao&rft.date=2022&rft.volume=6&rft.spage=783&rft.epage=786&rft.pages=783-786&rft.issn=2469-7281&rft.eissn=2469-729X&rft.coden=IJRFAF&rft_id=info:doi/10.1109/JRFID.2022.3212598&rft_dat=%3Cproquest_ieee_%3E2754152509%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-cd5657e60a52c7b1ea71139adc3c62768217496bc070b0f01a9068d16b2e61993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2754152509&rft_id=info:pmid/&rft_ieee_id=9913205&rfr_iscdi=true